1) прямые могут быть: секущими, параллельными,пересекающиеся
Радиус описанной вокруг прямоугольного треугольника окружности равен половине гипотенузы. Следовательно, 6:2=3
Получившийся многогранник - треугольная пирамида, в основании которой прямоугольный треугольник.
Объем пирамиды вычисляют по формуле V=1/3* S*h
Площадь осноавния АСД получившейся пирамиды равна
S =2*9:2= 18 см²
Высота равна АА1=4 см
Объем многогранника равен 18:3*4= 24 см³
Дано: АBCD - равнобокая трапеция,
(О;r), r=11см,
AB=22 см.
Найти: S
Решение:
AB =CD=22см(равнобокая трапеция),
Если трапецию описали около окружности, значит, сумма противолежащих сторон равна.
Следовательно AB +CD = BC +AD,
22см+22 см= 44см
BC = 11см, значит, АD =44см - BC =44см-11см = 33 см,
S= 11 см·22см·22см· 33см =175 692 см²
Ответ: 175692 см² (но это не точно)
Б) Дано: АВСД- четырехугольник,
угол А=99°, угол В=87°
Найти: угол С, угол Д.
Решение: т.к. АВСД вписан в окружность, то сумма его противолежащих углов равно 180°, значит, угол С=180°- угол А=180°-99°=81°, угол Д= 180°- угол В=180°-87°=93°.
Ответ: 81°, 93°
Ответ: 36п
Объяснение:
∠φ = 360° * sinα
Используя данный нам ∠φ (угол развертки боковой поверхности) найдем sinα
120° = 360° * sinα
sinα = 1/3
Вернемся к нашему конусу. Рассмотрим треугольник BDC.
Р ▲BDC = 24 см
ВА=АD
СА = 2R
Р ▲BDC = 2l + 2R
24 = 2l + 2R / 2
12 = l + R
l = 12 - R
Перейдем к прямоугольному треугольнику АВС. ∠ВАС = 90°, АС - R.
АС = 12 - R
sinα = AC/CB = R/(12 - R)
R/(12 - R) = 1/3
3R = 12 - R
4R = 12
R = 3 (см)
l = 12 - 3 = 9 (см)
S(полн п-ти) = Sбок + Sосн
S(полн п-ти) = пR² + пRl
S = п3² + п * 3 * 9 = 9п + 27п = 36п
Решение в приложенном фото