<span>Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника. </span>
<span>AD-биссектриса, тогда CD/DB=АС/АВ </span>
<span>АС/АВ=sin В </span>
<span>sin В=корень из (1 - cos^2 В) = 4/5.</span>
<span>Боковая сторона трапеции равна 17 см
чтобы это понять, надо посмотреть на верхнее (ВС) и нижние основание (АС) и секущую (ВД или АС) .
</span><span>Поэтому треугольник, образованный диагональю, боковой стороной и основанием -
равнобедренный с равными углами при диагонали, как при основании.</span><span>Отсюда боковая сторона равна
17 см. АВ и СD=17см
</span><span>Опустив из тупого угла С высоту (СК) на большее основание, получим прямоугольный треугольник CKD с катетами CK, KD и гипотенузой CD.
</span>
Высота трапеции это и есть катет СK из прямоугольного Δ
CKD.
Применяем теорему Пифагора, чтобы найти СК
СК² =17²-8²
СК=
=
=15 (см)
Ну, теперь можно вычислить площадь трапеции:
S=
=9*15=135 (см²)
АВ = 6 см, АС = 8 см, ВС = 10 см.
Заметим, что сумма квадратов двух сторон равна квадрату третьей стороне, т.е. 36 + 64 = 100, значит тр-ник АВС прямоугольный, ВС - гипотенуза.
Мы имеем пирамиду, боковые грани которой - равнобедренные тр-ки с боковыми сторонами МВ = МА = МС = 15 см.
МО - расстояние от точки М до плоскости тр-ка, т.е. перпендикуляр.
Прямоугольные тр-ки МОА = МОВ = МОС по гипотенузе (АМ = ВМ = СМ) и катету ОМ (он у них общий). Из равности этих тр-ков следует равность сторон ОА = ОВ = ОС. Значит О - центр окружности, описанной около тр-ка АВС. Тогда гипотенуза ВС является диаметром окружности, значит радиусы ОА = ОВ = ОС = 10 : 2 = 5 (см) как половина диаметра.
Из любого прямоугольного тр-ка с вершиной в точке М вычислим по теореме пифагора расстояние от точки М до плоскости тр-ка АВС:
МО = √(225 - 25) = √200 = 10√2 (см)
Ответ: 10√2 см