10. Треугольники СВЕ = САД по второму признаку (сторона и два прилегающие к ней угла).
АС = ВС, углы СВЕ = САД по условию
Угол С - общий.
Доказано
11. Рассмотрим тр-ки FKH и EPH.
FK = PE, КН = ЕН по условию.
Внешник углы этих треугольников при вершинах К и Е также равны по условию.
Обозначим эти углы одной буквой α, поскольку они равны.
Тогда Угол FKH = РЕН = 180 - α
Получается, что две сторон и угол между ними одного тр-ка соответственно равны двум сторонам и углу между ними другого тр-ка. Значит треугольники
FKH и EPH по первому признаку.
Дано:
АВСЕ — прямоугольная трапеция,
ВС = 6 сантиметров,
АЕ = 10 сантиметров,
угол Е = 45 градусов.
Найти боковую сторону АВ — ?
Решение:
1) Рассмотрим прямоугольную трапецию АВСЕ. Проведем высоту СН. Получим прямоугольник АВСО, тогда ВС = АО = 6 сантиметров, АВ = СО.
2) Рассмотрим прямоугольный треугольник СОЕ. Сторона ОЕ = АЕ - АО = 10 - 6 = 4 (сантиметров). Мы знаем, что сумма градусных мер углов любого треугольника равна 180 градусам.
Тогда угол ОСЕ + угол СЕО + угол ЕОС = 180;
угол ОСЕ = 180 - 90 - 45;
угол ОСЕ = 45 градусов.
Следовательно треугольник СОЕ равнобедренный, то СО = ОЕ = АВ = 4 сантиметров.
Ответ: 4 сантиметров.
АС диагональ, значит диагональ это (ВС+СД)/2. АС=(6+4)/2=5см
5)ОВ-радиус окр-сти; BN-касательная; В-точка касания
Значит ОВ⊥BN
тр-ник ОBN-прямоугольный
По теореме Пифагора находим:
OB^2+BN^2=ON^2; BN=√(2^2-1,5^2)=√(4-2,25)=√1,75=√1(3/4)=√(7/4)=
√7/2
6)OA⊥AK
тр-ник ОАК-прямоугольный
АО/ОК=sin(∠AKO); sinAKO=4/8=1/2; ∠AKO=30град
По свойству касательных -КО-биссектриса
∠АКВ=2*30=60град
7)ОВ⊥ВС тр.ОВС-прямоугольный
∠О+∠С=90град; ∠О=∠С=45град
тр. ОВС-равнобедренный, ОВ=ВС=5
8) ОА=ОС-радиусы; сумма всех углов тр-ка равна 180град;
тр-ник ОАС-равнобедренный; ∠А=∠С=(180-100)/2=40градусов
ОА⊥АК; ∠ОАК=90град
∠КАС=90-40=50град.
Так как CD высота, то она делит гипотенузу пополам, AD=DB
CD общая
значит треугольники CBD и ACD подобны