Сумма односторонних углов =180
/а+б=180
\а-б=48
а=48+б
48+б+б=180
2б=132
б=66
а=66+48=180-66=114
Если пирамида правильная, боковое ее ребро равно ребру основания, то все ребра пирамиды одинаковы. Всего их 10, соответственно 30/10=3
а) BC = √ ( CD^2 - BD^2 ) = √ ( (BD/cosBDC)^2 - BD^2 ) =
= BD √ ( 1/(cosBDC)^2 - 1 ) = 4√ ( 1/(cos60)^2 - 1 ) =
= 4√3 см
6 < BC < 7
б) длина медианы PD= √ [ (BC/2)^2 +BD^2 ] = √ [ (4√3/2)^2 +4^2 ] = 4√ [ (√3/2)^2 +1 ] = 2√7 см
из концов отрезка проводим перпендикуляры к прямой.
получаем два прямоугольных треугольника:
половина отрезка - гипотенуза
вертикальные углы равны
треугольники равны по гипотенузе и острому углу
перпендикуляры (расстояния от концов отрезка до прямой) равны
Sосн = (корень из 3 / 4)*a^2, a=6 корней из 3. В основании пирамиды правильный треугольник. Радиус вписанной окружности в прав. треугольник a / 2 корня из 3, т. е. 3. S бок. пов. = S полн. пов. - S осн. Боковые грани - равнобедренные треугольники, высоты которых являются апофемами пирамиды: S бок. пов. = 45 корней из 3. S одной грани (треугольника) 15 корней из 3. Высота равнобедр. треугольника 2S/a, 2 * 15 корней из 3 / 6 корней из 3 = 5. Радиус вписанной окружности, высота равнобедр. треугольника и высота пирамиды составляют прямоугольный треугольник, высота пирамиды находится из теоремы Пифагора: корень из 5^2-3^2 = 4 см. Если вы начертите рисунок, то все станет очень просто.