Найдём катеты вращающегося тр-ка, имеющего гипотенузу с =6см.
а = с·sin30° = 6·0.5 = 3(cм)
в = с·соs30° = 6·0.5√3 = 3√3(cм)
Треугольник, вращающийся вокруг катета образует тело вращения - конус.
1) Пусть треугольник вращается вокруг катета а, тогда высота конуса h = a = 3см, а радиус основания r = в = 3√3cм, образующая L = c = 6см.
Объём конуса V = 1/3 πr²·h = 1/3 ·π·27·3 =27π(cм³)
Площадь поверхности конуса
S = S бок + S осн = πrL +πr² = π·3√3·6 + π·27 =9π(2√3 + 3) (cм²)
2) Пусть треугольник вращается вокруг катета в, тогда высота конуса h = в = 3√3см, а радиус основания r = а = 3cм, образующая L = c = 6см.
Объём конуса V = 1/3 πr²·h = 1/3 ·π·9·3√3 =9π√3(cм³)
Площадь поверхности конуса
S = S бок + S осн = πrL +πr² = π·3·6 + π·9 =27π (cм²)