Свои данные подставь и всё будет норм6)
В треугольнике ABC угол С равен 90,СН- высота,ВС=14, sin A= 4/7. Найдите AH.
Длина катета ВС равна призведению гипотенузы АВ на sinA . Следовательно гипотенуза будет равна ВС / sinA
АВ = ВС / sinA = 14/(4/7)=14*7/4=24,5
Найдём по теореме Пифагора сторону АС
АВ²=АС²+ВС²
АС²=АВ²-ВС²
АС=√(24,5²-14²)=20,11
Рассмотрим треугольник АНС . Поскольку СН высота опущенная на гипотенузу то угол АНС прямой . Таким образом СН=АСsinA
СН= 20,11*(4/7)=11,49
Из теоремы Пифагора следует
АС²=АН²+СН²
АН²=АС²-СН²
АН=√(20,11²-11,49²)
АН=16,5
1, так как координаты складываються, получается, х= -7 + 2 = -5
у= -5 + 2 = -3
Ответ:
Объяснение:
ВС=AC*tgA=4*tg48°=4*1.1106≈4,4см
<span>Построение. </span>
<span>Из вершины A данного угла, как из центра, опишем окружность произвольного радиуса. Пусть B и C – точки пересечения ее со сторонами угла. Построим еще две окружности с тем же радиусом с центрами в B и C. Пусть D – точка их пересечения. Тогда [AD) – искомая биссектриса угла A.</span>
Сумма углов треугольника равна 180 градусам. На оставшийся угол приходится
180-90-30=60 градусов. Пользуясь теоремой о том, что напротив Большей стороны лежит больший угол получаем. АС - самая большая сторона, лежит напротив угла В
АВ - самая маленькая сторона, лежит напротив самого маленького угла. Этот угол С.
Оставшийся угол А - угол из 60 градусов.