<span>Вписанная, описанная окружности, взаимное расположение прямой и окружности, площади фигур, свойства прямоугольного треугольника. Задачи с окружностью, описанной около треугольника, вписанной в треугольник, описанной и вписанной около четырехугольника.<span>2 sin (</span>квадрат<span>) альфа, если tg альфа = корень из 5</span></span>
Пусть а= 4d, b = 3d, c = 5d
Коэффициент подобия k = A1C1 : АС = 20 : 5d = 4/d
Тогда х = A1B1 = AB · k = 4d · 4/d = 16
y = B1C1 = BC · k = 3d · 4/d = 12
Ответ: х = 16, у = 12
1 задача.
Катет, лежащий против угла 30 градусов равен половине гипотенузы. Искомое расстояние и есть этот катет. гипотенуза равна 26, значит расстояние равно 26:2=13
2 задача.
∠М=60°. Значит ∠А=90°-60°=30°
Катет, лежащий против угла 30 градусов равен половине гипотенузы.
МВ=30:2=15
5 задача.
Опустим перпендикуляр из точки М на прямую АВ. ∠А=90°-60°=30°Катет, лежащий против угла 30 градусов равен половине гипотенузы. Искомое расстояние равно 8:2=4
6 задача
Высота, опущеная из прямого угла в равнобедренном прямоугольном треугольнике равна половине гипотенузы. Значит расстояние от М до АВ 15:2=7,5
Ответ: AB = CB , BD = BD , AD = CD
Объяснение: у трикутнику всі сторони рівні ...
В △AOF и △COE:
∠AOF и ∠COE равны как вертикальные;
AO и
CO равны по свойству
диагоналей параллелограмма;
∠OAF и ∠OCE равны как внутренние накрест лежащие при BC ∥ AD и секущей AC.
Следовательно, треугольники AOF и COE равны по стороне и двум
прилежащим к ней углам.
Из равенства треугольников следует равенство соответствующих
сторон: AF = EC.
BC =
BE + EC = 1 + 2 = 3.