1) Решение имеет 2 варианта:
а) через синус известного угла найти высоту H треугольника,
тогда S = (1/2)*Н*в.
б) по теореме косинусов найти третью сторону треугольника, а площадь определить по формуле Герона.
а) sin C = √(1-cos²C) = √(1-(6/7)²) = √(1-(36/49) = √(13/49) = √13/7
H = 14*√13/7 = 2√13
S = (1/2)*(2√13)*8 = 8√13 = <span>
28.84441</span>.
б) с = √(а²+в²-2*а*в*cos C) = √(14²+8²-2*14*8*(6/7)) = √(<span>
196 +64-</span><span>
192) =</span>√<span> 68</span><span> =
</span>= <span>
8.246211. p = (14+8+</span><span>
8.246211)/2 = </span><span><span>15.12311
</span></span>S = √(p(p-a)(p-b)(p-c)) = <span><span>28.84441.
2) АС = (5-0=5; -1-0=-1) АС(5; -1)
СВ = (2-5=-3; 2-(-1)=3) СВ(-3; 3)
Скалярное произведение АС*СВ = Х1*Х2+У1*У2 = 5*(-3)+(-1)*3 = -15-3 = -18.
cos B = |(XBA*XBC+YBA*YBC)/(|AB|*|BC|)| = |(-2*3+-2*-3)/(2.8284*4.2426)| =
= 0/12 = 0. В = arc cos 0 = 90 градусов - треугольник прямоугольный.</span></span>
∆ АВС - равнобедренный, АВ=АС, поэтому АС=37.
<span>Из ∆ АНС по т.Пифагора </span>
АН=√(AC²-НC²)=√(37²-12²)=√1225=35
ВН=37-35=2
<span>По т.Пифагора из ∆ ВНС сторона ВС=√(HC</span>²<span>+BH</span>²<span>) </span>
<span>BC=√(144+4)=√148=2√37</span>
Сначала находим второй катетт, а дальше по формуле радиуса вписанной окружности r=a+b-c/2
...........................................................
Синус (sin) – отношение противолежащего катета к гипотенузе.
Т.е. sinα = a/c
b = 6, a = 8
c² = a² + b² = 6² + 8² = 36 + 64 = 100
c = √100 = 10
sinα = 8/10 = 0.8