Дано: ОСКD - параллелограмм.
Если у четырехугольника пара противоположных сторон параллельны и равны, то четырехугольник – параллелограмм.
Следовательно, АОКD и ВОКС - параллелограммы.
Значит ВС=ОК=АD.
Но ВК - биссектриса угла и диагональ параллелограмма ВОКС, отсюда ВС=СК=ВО.
Тогда ВD=2ВС.
С другой стороны АК - биссектриса угла и диагональ параллелограмма АОКD, отсюда АD=DK, но АD=ВС, значит DK=CK и ОСКD -ромб.
Значит СD перпендикулярна ОК.
Подкорректируем рисунок (рис.2)
Тогда и ВС перпендикулярна СD и АВСD - прямоугольник, в котором диагонали равны удвоенной стороне ВС(АD).
Из этого следует, что <BDC=<ACD=30°, а <СBD=<СAD=60°.
ВК и АК - биссектрисы, значит <ABK = <BAK = 60°.
Итак, в треугольнике АВК два угла при стороне АВ равны по 60°, следовательно и угол АКВ=60°.
Ответ: угол АКВ = 60°.
Решение задачи во вложенном файле.
S÷36 площадь треугольника
Длина окружности радиуса 8 см равна 2*пи*8. Значит длина круглой границы сектора будет равна длине окружности разделить на три (2*пи*4), потому что 90 градусов, это четверть окружности.
<span>Эта длина является длиной окружности основания конуса. Значит радиус основания конуса равен 2 см (длина окружности разделить на 2пи) . Высота конуса найдется по теореме Пифагора: корень из (8^2-2^2). Площадь осевого сечения (равна площади равнобедренного треугольника с высотой равной высоте конуса и основанием, равным диаметру) равна радиусу, умноженному на высоту сечения: 4*2корней из 15</span>