2) ΔTSP=ΔRSP (по гипотенузе и катету)
3) ΔABC=ΔCDA (по гипотенузе и катету)
4) ΔADF = ΔDCE (по гипотенузе и острому углу)
Ответ:
<em>48 м2,может быть это неправильно </em>
<em></em>
<em></em>
<em></em>
По теореме косинусов: АС² = АВ² + ВС² - 2 АВ ВС cos 150 = 4² + 9² - 2·4·9·(-√3/2) = 16+81 +36√3 = 97 + 36√3
АС = √(97 +36√3)
Рассмотрим отношение сторон треугольника, который оказывается <u>вписанным</u> в сечение шара.
12:16:20=3:4:5. Это отношение сторон классического <u><em>египетского треугольника.</em></u>
Этот треугольник - прямоугольный, сторона 20 - его гипотенуза. Она же - диаметр окружности сечения круга. <u>Радиус</u> этого сечения 20:2=<em><u>10 см</u></em>
<em><u /></em>
Дальнейшее решение не отличается от решения множества подобных задач.
Из треугольника с катетами:
1-й -расстояние от центра шара до плоскости сечения и
2-й -радиус сечения,
гипотенуза - радиус шара,
находим по теореме Пифагора радиус шара.
R=√(24² +10² )=26 см
1)16:2=8(2 кв.)
2)8:4=2(см)-длина и ширина
3)16•2=32