Для начала нужно решить первое условие задачи, то есть найти числа на оставшихся трех гранях.
Значит нам нужно подобрать такое число, которое будет делится без остатка (так как по условию задачи у нас только натуральные числа) на все числа, что нам даны: 5, 10 и 15. Самое наименьшее такое число 30. Оно делится:
30÷15=2;
30÷10=3;
30÷5=6.
Таким образом мы получили цифры на противоположных гранях. Напротив 15 - 2, напротив 10 - 3 и напротив 5 - 6.
Теперь необходимо решить второе условие задачи и сложить все числа.
15+2+10+3+5+6=41.
Таким образом правильный ответ под буквой В) 41.
По условиям задачи, каждый скинулся по 10 рублей.
В итоге сумма получилась в 30 рублей, которые отдали продавцу.
Продавец, вернул - 5 рублей.
1). 10-2 = 8
2). 10-1,5 = 8,5
3). 10-1,5 =8,5
Итого, если сложить все остатки, то получим - 25 рублей.
Простая Арифметика...
1действие: 50-1=49 Столько бегунов бегают быстрее Миши.
2действие: 50-1=49 Столько бегунов бегают медленее Миши.
3действие: 49+49+1=99 Общее количество бегунов.
Сравним шестиметровые столбы и полученные из них трехметровые бревна. Сразу же становится ясно, что бревна ровно вдвое короче столбов, следовательно, из каждого столба посредством одного распила получается два бревна.
Чтобы получить 10 бревен нужно разрезать 10 : 2 = 5 столбов. А мы знаем, что на каждый разрезанный столб нужен один распил. Следовательно, распилов тоже 5 и каждый требует 2 минут времени. Следовательно, чтобы узнать общее время на заготовку дров (без учета времени на подготовку столба и уборку полученных бревен, естественно), нужно длительность распила умножить на их количество. Тогда получим 2 мин * 5 распилов = 10 минут.
Ответ: понадобится 10 минут.
По условию - причёсанных девочек столько же, сколько непричёсанных мальчиков.
Могут ли быть непричёсанные девочки? Ну, в принципе, все девочки аккуратисты и, как правило, в школу приходят причёсанными. Но допустим, что такие девочки всё же нашлись, хотя бы одна. Но тогда она, или они, сразу же попадают в оба класса для итогового сравнения (и как девочки, и как непричёсанные), следовательно, равенства не нарушат.
А причёсанные мальчики, если такие найдётся, а такие могут найтись - они не попадут ни в один класс для итогового сравнения (они не девочки и они причёсаны).
Следовательно, девочек ровно столько же, сколько непричёсанных учеников.