Решать задачи по математике в общих чертах, наверное, не возможно.
Рассмотрим примеры.
x^2+x+9>0
Решая уравнение x^2+x+9=0 Вы получите отрицательный дискриминант, то есть решений нет. Эта парабола не пересекает ось "Х". Но ведь у нас неравенство! Нарисуем график.
А теперь озвучим формулу.
При каких икс игрек будет больше нуля? Да при любых. При изменении икса от -беск. да + беск наш игрек всегда будет выше оси "Х", а значит больше нуля.
Следующий пример. -x^2+x+9>0
Решаем уравнение -x^2+x+9=0 Дискриминант положительный, корня два, ветви параболу направлены вниз. Строим график.
Опять озвучиваем задание.
При каких икс игрек будет больше нуля? Очевидно, что при икс больше чем -2,541 и меньше чем 3,541 наш график будет выше оси "Х", а значит игрек больше нуля.
Как видите ничего сложного.
чтобы возвести дробь в степень надо возвести в степень и числитель и знаменатель
Результатом возведения дроби в степень будет новая дробь у которой числитель равен числителю этой дроби в возведенному в степень, а знаменателем будет знаменатель этой дроби в возведенный в степень.
Пример
<h1>(¾)³=3³/4³=27/64</h1>
Трудно сказать и маловероятно, что кто-то ответит. На счет дроббей очень все сложно.
Дробби те же лобби, а их множить уже некуда. Лобби достигли своего предела, хотя совершенству предела нет. Лобби можно только делить, поскольку умножить его на ноль нельзя, так же как и числа нельзя делить на ноль.
Что касается дробей - то тут все просто. Числитель умножаем на числитель, знаменатель на знаменатель. Например: 3/4 умножить на 2/5 равно 6/20 Т.е. 3 умножаем на 2 и записываем результат в числитель, а потом 4 умножаем на 5 и результат пишем в знаменатель.
1) Найдём количество чёрных и синих ручек. По условию их равное количество,значит :
(100-41-7-12)/2=20 ручек синего или черного цвета.
2) Отсюда вероятность того,что выпадет красная или черная ручка:
(41+20)/100=0,61
Для того чтобы возвести число в дробную степень нужно выполнить две операции: во-первых, возвести число в степень числителя дробной степени (числитель - это то что у дроби находится сверху), во-вторых, из того что получилось после возведения в степень нужно извлеч корень той степени чему равен знаменатель дробной степени (знаменатель - это то что стоит внизу дроби). Например, нам нужно возвести 3 в степень 3/7, сначало мы возводим 3 в степень числителя т.е. в куб, получаем 27, а затем извлекаме корень седьмой степени. Если дробная степень представленна с целой частью, то есть например нужно 2 возвести в степень 1 целая 1/3 то степень нужно представить в виде обычной дроби т.е. в данном случае это будет 4/3, а затем производить вычисления, 2 возводим в 4 степень получаем 16 и затем берем кубический корень из 16. Таким же образом в случае если нужно возвести число в степень 1,5, степень можно представить в виде обычной дроби 15/10 или 3/2 и произвести вычисления.