Ответ на первый ответ постой:
Скалярное произведение есть скаляр, равный произведению модулей на косинус угла между ними:
А=|p|*|q|*cos(p, q) = 3 *1* cos (pi/3) = 3*0,5=1,5..
Со вторыми заданиями немного сложнее:
Сначала установим условно вектор q на оси х, тогда получим, что оба вектора начинаются в 0 и имеют между собой заданный угол..
Разложим оба вектора p и q на взаимно ортогональные составляющие:
px=|p|cos (п/3)=3*0,5=1,5
py=|p|sin (п/3)=3*0,86=2,6
qx=|q|=1
qy=0
Далее согласно заданным выражениям AB = 2p - q; AC = 3p + 2q произведём вычисления для каждой спроецированной компоненты..
AB = 2p - q; AC = 3p + 2q
АВх=2*1,5-1=2
АВу=2*2,6=5,2
АСх=3*1,5+2=6,5
АСу=3*1,5=4,5
Итак, мы задали точку А(0;0), получили точки В(2;5,2) С(6,5;4,5)..
Вектор ВС задаётся точкой А и В..
Теперь всё просто: находим длину отрезка ВС по известным координатам:
|BC|=sqrt((6,5-2)^2+(5,2-4,5)^2)= 4,5..
отношение cos a=(5,2-4,5)/4,5 есть угол относительно оси абсцисс, относительно которой мы и отсчитываем угол а=81 град=1,41 рад..
Модуль и угол задают вектор ВС..
Чтобы найти длину медианы нужно найти точку М, которая делит ВС напополам 4,5/2 = 2,25..
Из подобия прямоугольного треугольника, построенного на точек М стороны
(6,5-2)/2+2 = 4,25..
(5,2-4,5)/2+4,5= 4,85..
Это координаты точки М (4,25;4,85)..
Теперь находим АМ=sqrt((4,25)^2+(4,85)^2)=6,45..
Это и есть искомая длина медианы..