Возьмем две произвольные прямые на плоскости, их пересекает третья прямая, называемая секущей ( все три прямые лежат в одной плоскости ). При пересечении двух прямых секущей и образуются соответственные углы. При пересечении двух прямых секущей образуется восемь углов. Разберемся, какие из них являются соответственными с помощью рисунка.
Но сначала замечу, что в геометрии при решении различных задач, чаще рассматривается вариант, когда две прямые, пересекаемые третьей, параллельны между собой. В этом случае образуемые при пересечении углы обладают рядом свойств.
На рисунке мы видим две параллельные прямые a и b, которые пересекает секущая c.
Соответственными в данном случае являются: 2 и 6, 3 и 7, 4 и 8, 1 и 5.
Соответственные углы, образуемые при пересечении двух параллельных прямых третьей, равны: 2=6, 3=7, 4=8, 1=5.
Углы, одной стороной которых является секущая и находящиеся по одну сторону от секущей, называются односторонними, например углы 1 и 6 будут односторонними.
На рисунке также хорошо видно, что углы с вершиной в одной точке 1, 2 и 5, 6 составляют угол 180 градусов, то есть 1+2=180, 5+6=180. Поскольку 2=6, то совершенно очевидно, что 1=5.
Углы с вершиной в одной точке 1, 2, 3, 4 и 5, 6, 7, 8 составляют угол 360 градусов, то есть 1+2+3+4=360, 5+6+7+8+=360.
Если известен односторонний угол 1, то то сумма соответственных углов 2+6= 360 - 2х1. Если выразить это словами, то сумма соответственных углов равна разности между 360 градусами и удвоенным односторонним углом.