Корень из числа проще всего вычесть с помощью калькулятора. Но, если у вас нет калькулятора, тогда надо знать алгоритм вычисления квадратного корня. Дело в том, что под корнем сидит число в квадрате. Например, 4 в квадрате - это 16. То есть корень квадратный из 16 будет равен четырем. Так же 5 в квадрате - это 25. Поэтому корень из 25 будет 5. И так далее.
Сейчас практически все калькуляторы, в том числе и на смартфонах умеют высчитывать квадратный корень из числа. НО если калькулятора у вас нет, то можно найти корень из числа несколькими простыми способами:
Разложение на простые множители
1
Разложите подкоренное число на множители, являющиеся квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число.1 Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, являющиеся квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.
Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16, которое также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
Запишите это как: √400 = √(25 х 16).
2
Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b2. Воспользовавшись этим правилом, извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.
В нашем примере извлеките корень из 25 и из 16.
√(25 х 16)
√25 х √16
5 х 4 = 20
3
Если подкоренное число не раскладывается на два квадратных множителя (а это происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.
Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
√147
= √(49 х 3)
= √49 х √3
= 7√3
4
Теперь вы можете оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.
Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Та как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 - мы были правы.
5
Еще один способ – разложите подкоренное число на простые множители. Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.
Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
Рассмотрим другой пример: √88.
√88
= √(2 х 44)
= √ (2 х 4 х 11)
= √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
= 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.
Может быть полезным будет еще это обучающее видео:
Если число небольшое, то его можно легко вычесть устно, к примеру, корень из 25 будет равен 5, а корень из 144-12. Также на калькуляторе можно посчитать, есть специальный значок корня, нужно вбить число и нажать на значок.
Поможет также таблица квадратных корней:
Есть еще способы, которые более сложные, однако очень эффективные:
Прежде чем заниматься вычитанием квадратного корня из какого-либо числа, необходимо будет либо вычислить корень квадратный из представленной численной величины, либо максимально упростить подкоренное выражение, другими словами, необходимо будет избавиться от знаков радикала:
Существует несколько способов вычисления корня квадратного из математического выражения или числа. Рассмотрим способ извлечения корня из выражения с переменными:
Если изначально приходится иметь дело с неким числом, численной величиной, то применяем следующий способ:
Можно воспользоваться существующей таблицей квадратов натуральных чисел:
И, наконец, третий способ решения задачи - это использования различных вычислительных средств - калькулятора (там имеется соответствующий значок) или компьютера:
После того, как квадратный корень из числа (или выражения) извлечён, производим операцию вычитания полученного значения из заявленного в примере числа.
Вычесть корень из любого числа вам поможет калькулятор стационарный или приложение на вашем смартфоне. Если же такой возможности нет, вычесть корень из числа можно с помощью такого алгоритма: корень из 4 равняется 2, корень из 16 будет 4 и т.д.
Операция - извлечение корня — это обратная операция возведения в квадрат. Таким образом, зная какое число при возведении в квадрат даст нам число под корнем легко можно его найти. Можно прибегнуть к помощи калькуляторов, таблиц, но если нет под рукой такой помощи, то исчисление корня из чисел затруднительно. Но есть действенный алгоритм, который упростит эту задачу.
Для того чтобы возвести число в дробную степень нужно выполнить две операции: во-первых, возвести число в степень числителя дробной степени (числитель - это то что у дроби находится сверху), во-вторых, из того что получилось после возведения в степень нужно извлеч корень той степени чему равен знаменатель дробной степени (знаменатель - это то что стоит внизу дроби). Например, нам нужно возвести 3 в степень 3/7, сначало мы возводим 3 в степень числителя т.е. в куб, получаем 27, а затем извлекаме корень седьмой степени. Если дробная степень представленна с целой частью, то есть например нужно 2 возвести в степень 1 целая 1/3 то степень нужно представить в виде обычной дроби т.е. в данном случае это будет 4/3, а затем производить вычисления, 2 возводим в 4 степень получаем 16 и затем берем кубический корень из 16. Таким же образом в случае если нужно возвести число в степень 1,5, степень можно представить в виде обычной дроби 15/10 или 3/2 и произвести вычисления.
Очевидно, что если бы все вычисления в вопросе проводились в числах, записанных в десятичной системе счисления, то вопрос бы большого смысла не имел. Не имеет смысла спрашивать, чему равно 84, если всё проводится с обычными десятичными числами. То есть методом исключения мы определили, что в примере с умножением применена какая-то иная система, не десятичная. Нужно выяснить, какая именно. Мы видим, что результат, который должен был бы равен 64, записывается в той системе как 54. Нет сомнения, что 5 — это цифра десятков, а 4 — цифра единиц. Обозначим переменной x пока неизвестное нам искомое основание системы. Составим уравнение:
5x + 4 = 64,
откуда:
5x = 60;
x = 12.
Мы нашли, что умножение проводилось по двенадцатеричной системе. Теперь мы можем найти, чему равно двенадцатеричное число 84 по нашей общепринятой десятичной системе:
8 * 12 + 4 = 96 + 4 = 100.
Ответ: 84 (12) = 100 (10). В скобках — основания систем счисления.
Пусть рубашка стоит 100 единиц, тогда брюки будут стоить 130 единиц, а пиджак будет стоить 169 единиц. Он дороже брюк на 39 единиц. Единиц, но не процентов. А вот 39 единиц от 130 единиц будут составлять всего 30%.
Насколько я понял, R – это значок функции, например f(x). Поэтому запишем ваш первый интеграл так I = int[f(sinx)cosxdx]. Сюда входят и синус и косинус. Самый простой способ решения это заменить косинус на синус, или наоборот. При этом надо знать следующее равенство: d(sinx) = cosxdx. Или cosxdx = d(sinx). Тогда ваш интеграл примет более удобный вид I = int[f(sinx)dsinx]. Сюда входит только одна функция sinx. Чтобы было еще понятней, сделаем такую замену переменных: sinx = z. Тогда I = int[f(z)dz]. Для того чтобы решить этот интеграл, надо знать конкретный вид функции f(z).
Возьмем ваш второй интеграл I = int[f(cosx)sinxdx]. Метод решения тот же самый. Но надо вспомнить дифференциал от косинуса. Он тоже есть в таблицах. d(cosx) = -sinxdx. То есть sinxdx = - d(cosx). Тогда ваш второй интеграл примет вид I = -int[f(cosx)d(cosx)]. Для удобства введем замену переменных cosx = z. Имеем I = -int[f(z)d(z)]. Интегралы в алгебраическом виде решать проще, чем в тригонометрическом виде. И здесь надо знать конкретный вид функции f(z).
Теперь ваш третий интеграл int[f(sinx,cosx)dx]. Сделаем такую же замену переменных, как и в предыдущем случае. Здесь уже сложнее. Надо в подинтегральном выражении оставить только синус или только косинус, сделать что проще. Например, выразим sinx через cosx. Из тригонометрии мы знаем, что sin^2(x) + cos^2(x) = 1. То есть сумма квадратов синуса и косинуса равна 1. Отсюда sin^2(x) = 1 - cos^2(x). Тогда sinx = корень[1 - cos^2(x)]. Где корень[ ] означает взять квадратный корень из выражения, стоящего в квадратных скобках. То есть мы заменили синус на косинус. Остается интеграл только от косинуса. I = int[f(cosx)]dx. Например, имеем интеграл I = int[cos^2x * sinxdx]. Заменим синус на косинус. I = int{cos^2x * корень[1 - cos^2(x)]dx}. Получилось сложное выражение. Но метод решения вашего интеграла – надо выразить синус через косинус или косинус через синус, и выбрать что проще. Для решения интеграла int[f(cosx)]dx тоже бывает проще перейти к алгебраическому выражению. Сделаем замену переменных cosx = z. Но dz = dcosx = -sinxdx = - корень[1 – cos^2x]dx = - корень[1 – z^2]dx. Отсюда dx = -dz/корень[1 – z^2]. Имеем I = int[f(cosx)]dx = -int[f(z)dz/корень(1 – z^2)].
Криволинейная трапеция – это плоская фигура, контуры которой ограниченны: а) внизу – осью абсцисс, б) по бокам – вертикальными прямыми, в) верхний контур – графиком неотрицательной неприрывной функции. Как и любая плоская фигура, криволинейная трапеция имеет площадь (без названия).
А вот ФОРМУЛА, с помощью которой определяется эта площадь, название имеет. Вычисление площади проводят с применением интеграла.
В 19 веке идеи интегральных исчислений были приведены в математическую систему английским физиком Иссаком Ньютоном и немецким философом, математиком и физиком Вильгемом Лейбницом. К окончательному верному выводу ученые шли разными путям. И дабы не обидеть никого из них, по решению других ученых, было принято такое решение.
Формула, с помощью которой определяется площадь криволинейной трапеции носит название этих двух ученых – формула Ньютона-Лейбница.