PD-перпендикуляр, проведённый из точки P к плоскости (ABC); D-основание перпендикуляра; PB-наклонная; B-основание наклонной.
Значит DB-проекция наклонной на плоскость.
Но DB перпендикулярна AC(т.к. в квадрате диагонали перпендикулярны)
Проведём прямую а параллельную AC через основание наклонной(через В).
По лемме о перпендикулярности прямых(если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой): DB перпендикулярна a
По теореме о трёх перпендикулярах(прямая(a), проведенная в пплоскости через основание наклонной(B) перпендикулярно к ее проекции(DB) на эту плоскость, перпендикулярна и к самой наклонной(PB)):PB перпендикулярна a.
И опять по лемме о перпендикулярности прямых:a||AC, a перпендикулярна PB, значит AC перпендикулярна PB.
(что неясно-пиши в личку)
Квадрат гипотенузы равен сумме квадратов катетов
5 в квадрате 25
6 в квадрате 36
25+36=61
гипотенуза равна корню квадратному из 61
извините,не знаю,где значок корня квадратного))
Уравнение пряммой будем искать в виде:
A(-3;-3), B(3;5)
либо
- искомое уравнение пряммой