..............................................................
Полное условие задачи.
Осевое сечение цилиндра АВСD - квадрат. АС = 4 см. Найти площадь боковой поверхности.
(х+х+30)×2=180
4х+60=180
4х=180-60
4х=120
х=30
х+30=60
1) так...построим этот треугольник...опустим высоту АД на гипотенузу BC ...получается еще один прямоугольный треугольник АБД, отсюда найдем...проекцию большего катета на гипотенузу....400 = 144 + х (квадрат), х = 16..теперь у нас высота которая дана нам..это 12 см по формуле H(квадрат) = ХУ, где х и у проекции катетов на гипотенузу..так как мы одну из них нашли (16 см) ...подставляем под формулу..найдем отсюда вторую проекцию 144 = 16*у, у = 9..
теперь у нас есть гипотенуза от треугольника АБС, отсюда по теореме пифагора найдем катет АС..625 = 400 + АС(квадрат) , АС = 15 см.
СОS C = прилежащий катет / на гипотенузу...отсюда..COS C = 15/25 = 3/5.
2) так как диагональ БД перпендикулярна стороне АД, образовался прямоугольный треугольник ..и так как КОСИНУС УГЛА А = прилежащий катет /на гипотенузу..то отсюда COS 41 = x/12 , х = 12 * cos 41...подставим в формулу для нахождения площади параллелограмма АБСД...= S = a * b * sin a, а и b стороны, синус угла А это угол между сторонами...отсюда получаем S = 12* 12* sin41 *cos 41 = 72 * sin 82
Наименьшая высота треугольника равен стороне 13 см