Для треугольника утверждение неверно, например, можно рассмотреть треугольник с углами 70, 60, 50 градусов.
Предположим, что во многоугольнике (число углов больше 3) нет ни одного тупого угла. Тогда каждый угол не превосходит 90 градусов, а сумма всех n углов меньше 90n (все углы, кроме, быть может, одного, являются острыми).
Сумма углов n-угольника равна 180(n-2), тогда 180(n-2)<90n, откуда 2(n-2)<n, 2n-4<n, n<4, получили противоречие с тем, что число углов больше 3. Значит, любой многоугольник с неравными углами (если углов 4 и больше), имеет хотя бы один тупой угол, что и требовалось доказать.
1)
Градусная мера полного угла равна 360*
Найдем град. меру данного нам угла:
360/3=120*
Угол в 120* тупой(больше 90*) отсюда следует, что нам дан тупоугольный треугольник.
2)
Сумма углов в любом треугольнике равна 180*
Определим на сколько частей ее разделили:
5+7+3=15 частей
найдем одну часть
180/15=12*
N=12*5=60*
B=12*3=36*
G=12*7=84*
3)
Сумма углов в любом треугольнике равна 180*
Угла при основании р.б равны
(180-77)/2=51.5* - угол напротив основания
4)
Сумма углов в любом треугольнике равна 180*
Угла при основании р.б равны
52*2= 104* - градусная мера обоих углов при основании
180-104=76* угол напротив основания
5)
Сумма углов в любом треугольнике равна 180*
С=180-32-60=88*
6)
Сумма острых углов в прямоугольном треугольнике равна 90*
90-81=9* - второй острый угол
7)
если в треугольнике есть тупой угол(больше 90*), то он тупоугольный
106*>90* - отсюда следует , что наш треугольник тупоугольный
1. Длина хорды 18, половина 9. от В до середины хорды 3. h - расстояние от центра до хорды (= до её середины). Имеем
Т.к. диагонали прямоугольника при пересечении делятся пополам, то треугольник MNO равнобедренный угол MNO=углу NMO=65 угол MON=180-65-65=50 градусов
наименьший угол между диагоналями 50градусов и наибольший угол между диагоналями 130 градусов (180-50=130)
Широта: от экватора до полюса - четверть круга. 360: 4 = 90 градусов
долгота от нулевого меридиана до 180 - половина круга. 360 : 2 = 180 градусов
ОТВЕТ:Б 180