Объем пирамиды: 1/3 S основания * h
площадь прямоугольного треугольника: 1/2 стороны * h = 2,5 * 12(по теореме пифагора нашли) = 30
30/3 = 10 и умножаем на высоту пирамиды 15
ответ 150
Пусть дана <span>правильная треугольная пирамида SABC.
Центр основания - точка О пересечения медиан треугольника основания.
В боковой грани </span>SСB проведём апофему <span>SД.
Тогда двугранный угол наклона боковой грани к основанию измеряется плоским углом </span><span>SДО.
</span>Расстояние от центра основания до боковой грани - это перпендикуляр ОК на апофему <span>SД.
Высота пирамиды </span>SО = Н = 2/sin(90°-60°<span>) = 2/0,5 = 4 см.
Отрезок ОД = 2/sin60</span>° = 2*2/√3 = 4/√3 см.<span>
Медиана основания АД (она же и высота и биссектриса угла основания) равна трём отрезкам ОД по свойству медиан.
АД = 3*(4/</span>√3) = 12/√3 = 4√3 см.
Сторона основания а = АД/cos30° = (4√3)/(√3/2) = 8 см.
Периметр основания Р = 3а = 3*8 = 24 см.
Апофема А = Н/sin60° = 4/(√3/2) = 8/√3 см.
Боковая поверхность пирамиды равна:
<span>Sбок = (1/2)Р*А = (1/2)*24*(8/</span>√3) = 96/√3 = 32√3 см².
Угол А при основании трапеции равен 12+13=25 градусов. Трапеция равнобедренная , значит два тупых угла равны между собой и равны 180-25=155 градусов каждый.
Ответ: Больший угол 155 градусов.
<span>Треугольник ABC: AB=BC=25, AC=14. Сначала найдем медиану, проведенную к основанию, назовем ее BK. В равнобедренном треугольнике высота, медина, биссектриса, опущенные на основание совпадают. Значит, BK разделила АС а равные части под прямым углом: AC=AK + KC=7+7=14. Теперь рассмотрим прямоугольный треугольник BKC, где угол К=90, ВС=25, КС=7, ВК-?. ТОгда по теореме Пифагора: ВК=25^2-7^2=24. Одна медиана найдена. Медианы АN=CM, их найдем по формуле нахождения медианы. Просто подставишь и получишь ответ.</span>
Может токо если эта прямая пересекая одну из прямых будет паралельна к другой( это можно проверить опустив перпендикуляр с одной из точек на пересикаемых прямых-если нужно :) )