Квадратный корень из произведения и дроби
Квадратным корнем из числа a называют такое число, квадрат которого равен a. Например, числа -5 и 5 являются квадратными корнями из числа 25. То есть, корни уравнения x^2=25, являются квадратными корнями из числа 25. Теперь необходимо научиться работать с операцией извлечения квадратного корня: изучить его основные свойства.
Квадратный корень из произведения
√(a*b) =√a*√b
Квадратный корень из произведения двух неотрицательных чисел, равен произведению квадратных корней из этих чисел. Например, √(9*25) = √9*√25 =3*5 =15;
Важно понимать, что это свойство распространяется и на тот случай, когда подкоренное выражение представляет собой произведение трех, четырех и т.д. неотрицательных множителей.
Иногда встречается и другая формулировка этого свойства. Если a и b есть неотрицательные числа, то справедливо следующее равенство √(a*b) =√a*√b. Разницы между ними нет абсолютно никакой, можно использовать как одну, так и другую формулировку(кому какую удобнее запомнить).
Квадратный корень из дроби
Если a>=0 и b>0, то справедливо следующее равенство:
√(a/b) =√a/√b.
Например, √(9/25) = √9/√25 =3/5;
У этого свойства тоже существует другая формулировка, на мой взгляд, более удобная для запоминания.
Квадратный корень частного равен частному от корней.
Стоит отметить, что эти формулы работают как слева направо, так и справа налево. То есть при необходимости, мы можем произведение корней представить как корень из произведения. Тоже самое касается и второго свойства.
Как вы могли заметить, эти свойства очень удобны, и хотелось бы иметь такие же свойства для сложения и вычитания:
√(a+b) =√a+√b;
√(a-b) =√a-√b;
Но к сожалению таких свойств квадратные корни не имеют, и поэтому так делать при вычислениях нельзя.
Надеюсь помогла
Х+у=56
х=56-у
<u>х </u> = <u> 56-у </u> = <u> 56 </u> - <u>у</u> = <u>56</u> - 1
у у у у у
Довжина третьої сторони може бути менше 5+2=7 см і більше 5-2=3 см, отже третя сторона може бути 5 см.