5*25^-x - 126 * 5^-x + 25 ≤ 0
умножим лево и право на 25^x (имеем право - это положительное число, ничего в неравенстве не изменится)
и вспомним что 25^x = (5^x)^2
5 - 126*5^x + 25*25^x ≤ 0
5^x = t
5 - 126t + 25t^2 ≤ 0
D=126^2 - 4*5*25 = 15876 - 500 = 124^2
t12= (126 +-124)/50 = 1/25 5
(t - 1/5)(t - 5) ≤ 0
метод интервалов
+++++++[1/25] ----------- [5] +++++++++
5^x = t
t>=1/25 5^x>=1/25 5^x≥ 5^-2 x>=-2
t<=5 5^x <=5 x<=1
x∈[-2 1]
смотрим второе
log(x+1)^2 x^2 ≤ 1
ОДЗ x^2 ≠ 0 x≠0 (x^2 > 0 во всех остальных случаях)
(x+1)^2 ≠ 0 x≠-1
(x+1)^2≠ 1 x≠0 x≠-2
применяем метод рационализации
log(f(x)) g(x) ≤ log(f(x)) h(x) ⇔ (f(x)-1)(g(x) - h(x)) ≤ 0 при выполнении ОДЗ
log(x+1)^2 x^2 ≤ log(x+1)^2 (x+1)^2
((x+1)^2 - 1)(x^2 - (x+1)^2 ) ≤ 0
(x+1 -1 )(x+1 +1)(x-x-1)(x+x+1) ≤ 0
x*(x+2)*(-1)*(2x+1) ≤ 0
x(x+2)(2x+1)≥0
метод интервалов
-----------(-2) +++++++ [-1/2] ---------- (0) ++++++++++
x∈ (-2 -1) U (-1 -1/2] U (0 +∞) пересекаем с первым ответом x∈[-2 1]
ответ x∈(-2 -1) U (-1 -1/2] U (0 1]
2x^2 + 3x - 3 = x^2 - 3x - 2 + x^2
2x^2 + 3x - 3 = 2x^2 - 3x - 2
2x^2 - 2x^2 + 3x + 3x - 3 + 2 = 0
0 + 6x - 1 = 0
6x - 1 = 0
6x = 1
x = 1/6
{ (x-2)^2+y^2=9,
y=x^2-4x+4,
{y=(x-2)^2,
(x-2)^2+(x-2)^4=9,
(x-2)^4+(x-2)^2-9=0,
(x-2)^2=t,
t^2+t-9=0,
D=37,
t1=(-1-√37)/2<0,
t2=(-1+√37)/2,
(x-2)^2=(-1+√37)/2,
Уверена что в условии нет ошибки?
Решение
(2у³-6у²+12)*(-1,5у³)
-2у³*1,5у³-6у²*(-1,5у³)-12*1,5у³
Ответ
-3у⁶+9у⁵-18у³