Ответ: а) x²-15*x+36=(x-12)*(x-3), б) y²-6*y-1=(y-3-√10)*(y-3+√10).
Объяснение:
а) x²-15*x+36=(x-x1)*(x-x2), где x1 и x2 - корни квадратного уравнения x²-15*x+36=0. Его дискриминант D=(-15)²-4*1*36=81=9², и тогда x1=(15+9)/2=12, x2=(15-9)/2=3. Поэтому x²-15*x+36=(x-12)*(x-3).
б) y2-6*y-1=(y-y1)*(y-y2), где y1 и y2 - корни квадратного уравнения y²-6*y-1=0. Его дискриминант D=(-6)²-4*1*(-1)=40=(2*√10)², и тогда y1=(6+2*√10)/2=3+√10, y2=(6-2*√10)/2=3-√10. Поэтому y²-6*y-1=(y-3-√10)*(y-3+√10).
У тебя равенство. Здесь не может быть интервалов. Строго эти корни и все
Y = k/x ===> k = x * y = -3 * 4 = -12
B(2√3;-2√3) k = 2√3 * (-2√3) = -12
Ответ: k = -12; точка B(2√3;-2√3) принадлежит графику функции y = k/x
Двузначное число записанное двумя цифрами, например,
68=6·10+8
Поэтому двузначное число, записанное двумя цифрами х и у
это
10х + у.
Если приписать цифру 2 справа, то получится трёхзначное число
100х + 10у + 2, которое в 9 раз больше задуманного двузначного (10х + у)
100х + 10у + 2 = 9(10х + у)
100х + 10у + 2 = 90х + 9у,
100х-90х+10у-9у = -2
10х+у = - 2
Это уравнение не имеет решения
х и у - цифры, они положительны и равняться -2 не могут
Если приписать цифру 2 слева, то получится трёхзначное число
200+10х+у, которое в 9 раз больше задуманного двузначного (10х+у)
200+10х+у = 9·(10х+у)
200+10х+у-90х-9у=0
80х+8у=200
40х+4у=100
х=2
у=5
Ответ. 25
Число 225 больше 25 в 9 раз
-1≤ х ≤ 3*l-1l, -3≤ -х ≤1
-3+1≤1- х ≤ 1+1
-2≤ х ≤ 2-это и есть оценка двойного неравенства.
1.умножаем на -1 все элементы неравенства и меняем знаки на противоположные
2.почленно прибавляем 1