Задание. У мамы 2 яблока и 3 груши. Каждый день в течение 5 дней подряд она
выдает по одному фрукту. Сколькими способами это может быть сделано?
Решение. Имеем набор {я, я, г, г, г}. Всего перестановок пятиэлементного множества
5!, но мы не должны учитывать перестановки, в которых объекты одного типа меняются
местами несколько раз, поэтому нужно поделить на возможное число таких перестановок:
2! · 3!. Получаем в итоге
5!
2! · 3! = 3 · 4 · 5
2 · 3
= 10.
Ответ: 10 способов.
-3х+4-2х=8х-9
-3х-2х-8х=-9-4
-13х=-13
х=1
!!!!!!!!!!!!!!!!!!!!!!!!!!
1. (1+cos2x)/2 -cos2x =sinx ; x∈[π ;2π] .
(1-cos2x)/2 =sinx ;
sin²x -sinx ;
sinx(sinx -1) =0 ;
[ sinx =0 ; sinx =1 . [ x =πk , x=π/2 +2πk , k∈Z.
учитывая x∈ [π ;2π]
ответ : { π/2 ; π ; 2π }
-------
2.
5cos²x -9sinx =9 ; cos x<0 .
5(1 - sin²x) - 9sinx = 9 ;
5sin²x +9sinx +4 =0 ;
sinx = (-9 -1)/2*5 = -1. ⇒cosx =0 не решение (по условию cosx <0).
sinx = (-9 +1)/2*5 = - 4/5 .
{ sinx = - 4/5 ; cosx < 0 . * * * π < x <3π/2 * * *
x =arcsin(4/5) + (2k+1)π , k ∈Z .