1)Надо продлить прямую AB за точку A до пересечения с прямой n в точке С, 2) обозначить центр окружности O.
3) провести из точки A перпендикуляр на n (то есть построить проекцию точки A на прямую n). Пусть это - точка N.
4) Проекция точки B на n - точка M
5) Проекция точки O (центра окружности) точка K;
6) через точку A надо провести прямую II n, пусть она пересекает BM в точке F и OK в точке E;
7) и последнее - через точку O тоже проводится прямая II n до пересечения с BM в точке D;
Итак, есть касательная CK и секущая CB к окружности с центром в точке O.
Очевидно, что AFMN - прямоугольник, поэтому
BF = BM - AN = 5 - 1 = 4;
в прямоугольном треугольнике AFB известны гипотенуза AB = 2√5 и катет BF = 4; откуда AF = 2; разумеется NM = AF = 2;
и кроме того, AN = FM = EK = 1; поскольку AEKN - тоже прямоугольник.
из подобия треугольников AFN и ACN легко найти CN = 1/2;
Ясно, что CM = СN + NM = 1/2 + 2 = 5/2;
чтобы дальше не тащить длинные буквенные обозначения, я обозначу радиус окружности R; и пусть CK = a;
тогда OB = OA = OK = R; AE = CK - CN = a - 1/2; OD = CK - CM = a - 5/2;
Из треугольника BOD OD^2 + BD^2 = OB^2; BD = BM - R;
(a - 5/2)^2 + (5 - R)^2 = R^2;
или a^2 - 5a + 25/4 + 25 - 10R = 0;
Из треугольника AOE AE^2 + OE^2 = AO^2; OE = R - EK = R - 1;
(a - 1/2)^2 + (R - 1)^2 = R^2;
a^2 - a + 1/4 + 1 - 2R = 0;
Если исключить R из двух полученных уравнений, получится
a^2 = 25/4; или a = 5/2 или (-5/2);
второе решение не надо "отбрасывать", это - не вермишель :).
После этого легко найти и R, 2R = 1 + (a - 1/2)^2;
в первом случае R = 5/2; во втором R = 5;
Геометрически второе решение отличается от первого тем, что точка K лежит с другой стороны от точки C, чем точки M и N. поэтому a получилось отрицательное. При этом дуга окружности AB лежит ниже прямой AB.
Раз боковая грань имеет равные стороны 12 см, /36/3=12/, и пирамида правильная. то сторона основания равна тоже 12см, а площадь основания - площадь правильного треугольника со стороной 12 см. и она равна 12²√3/4=36√3, искомое произведение равно 36√3*√3=108 /см²/
Угол BOA и угол COD вертикальные, значит они равны. AO = OC и BO = OD, значит, треугольники AOB и COD равные по первому признаку равенства треугольников.
Определение: Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и и углу между ними другого треугольника, то такие треугольники равны.
Вроде так.
1) Рассмотрим ΔMKF и ΔMEN
- MK=ME (по условию) ⇒ ΔМКЕ - равнобедренный
- ∠К=∠Е (свойство равнобедренного треугольника
- ∠KMF = ∠EMN (по условию)
Следовательно, ΔMKF=ΔMEN
2) ∠MFN - внешний угол вершины F в ΔMKF
∠MNF - внешний угол вершины N в ΔMEN
∠F=∠N (т.к. ΔMKF=ΔMEN из п,2) ⇒
<span>∠MFN=∠MNF (т.к. внешний углы при равных вершинах должны быть равны)</span>
Просто посчитать количество белых и черных плиток. Здесь: 5:10 сокращаем 1:2.
Примечание: черные 1, белые 2.