Угол DCE=углу ACB (Вертикальные). Т.к. треугольники ABC и DCE-раанобедренные (DC=CE, а AB=BC), то углы при основании равны (угол C=E, а из первого выходит, что C=E=ACB=A). чтд.
2) sinA+sinA/cosA= (sinA*cosA+sinA )/cosA= sinA(cosA+1)/cosA=(cosA+1)*корень (1-сos^2A)/cosA=-8*корень из 6/5
1)SinA/cos^2A= sinA/(1-sinA)=0.5
Нехай одна сторона прямокутника дорівнює х см, тоді друга — 5х, що в сумі складає 24. Маємо рівняння: х+5х=24; 6х=24; х=4 (см), тоді одна сторона 4 см а інша — 5*4=20 см.
Відповідь: 4 і 20 см.
Сначала делим четырехугольник диагональю на два треугольника.
Находим центр тяжести каждого треугольника как точку пересечения его медиан. Центр тяжести четырехугольника лежит на прямой О1О2, соединяющей центры тяжести этих треугольников.
Затем делим четырёхугольник на 2 треугольника при помощи другой диагонали и находим так же центры тяжести других треугольников. Соединяем их отрезком О3О4.
Искомый центр тяжести четырёхугольника лежит в точке ЦТ пересечения отрезков О1О2 и О3О4.
ABD x y BCD x y
O2 3 2 O3 2 2
ADC x y ABC x y
O1 0,6667 1,3333 O4 3,3333 1,6667
ЦТ = х у
2,533 1,8667