Т.к. треугольник - равнобедренный, то углы при основании равны => угол 1=углу 2 =70 градусам
угол 3 = 180-140=40
Обозначим трапецию АВСD, среднюю линию МК, центр вписанной окружности О; радиус, проведденный в точку касания окружности с боковой стороной АВ – ОТ.
<span>Трапеция равнобедренная, следовательно, центр вписанной окружности лежит в точке пересечения средней линии и срединного перпендикуляра к обоим основаниям трапеции. </span>
<span>МО=ОК=4:2=2 </span>
<span>Радиус, проведенный в точку касания, перпендикулярен касательной. </span>
<span>∆ МОВ - прямоугольный. </span>
МК и АD параллельны, АВ - секущая, углы ВМО=ВАН=30°
Из ∆ ВОМ радиус ВО=МО•sin30°=2•0.5=1см
<span>Формула длины окружности </span>
<em>l=2πr</em>
<span><em>l</em>=2π•1=<em>2π</em> см</span>
Aiman ты от куда у нас в олимпиаде тоже такое задание есть
<span><em>Вершины треугольника АВС лежат на окружности с центром О, угол АОВ=80º, дуга АВ </em></span><em>относится к дуге</em><span><span><em> ВС так, как относится</em></span><span><span><span><em> 2 к </em><span><em>3.</em>
</span><em> </em></span><span><em><u>Найти углы треугольника АВС</u></em>
</span></span>В подобных задачах обычно дается отношение </span></span>◡АС: ◡ВС, здесь дано отношение известной дуги AB к неизвестной ВС, причем о второй неизвестной ◡АС ничего не сказано.
<u>Решение.</u>
Центральный ∠АОВ=80°. ⇒<span>◡АВ, на которую он опирается, равна 80</span>°.
Тогда
◡АС + ◡ВС =360°-80°=280°⇒
◡ВС=280° - <span>◡АС
</span>Из данного в условии отношения следует:
80°:(280°- <span>◡АС=2:3
</span>240°=560°- 2◡АС
2◡АС=320°
◡АС=160°
Вписанный ∠АВС опирается на эту дугу и равен 160°:2=<span>80°
</span><span>◡ВС=280</span>°<span>-160</span>°<span>-120</span>°
Вписанный ∠ВАС опирается на неё и равен 120°:2=60°
Вписанный ∠АСВ опирается на дугу АВ и равен 80°:2=40°
Сумма углов ∆ АВС=80°+60°+40°=180°
АВ:ВС=80°:120°=2:3