Обозначим cos(альфа) = V2 / 10, a и b ---основания трапеции...
sin(альфа) = V ( 1 - (cos(альфа))^2 ) = V ( 1 - 2/100 ) = V98 / 10 = 7V2 / 10
если построить высоту трапеции, то получим прямоугольный треугольник, в котором гипотенуза = 10,
один катет = h = 10*sin(альфа) = 10*7V2 / 10 = 7V2
второй катет = b - (b-a)/2 = (b+a)/2 = 10*cos(альфа) = V2
Sтрапеции = h*(a+b)/2 = 7V2 * V2 = 14
(((здесь интересный момент в том, что и не нужно совсем <u>отдельно</u> находить основания трапеции...
две проведенные высоты трапеции отрезают от трапеции два равных прямоугольных треугольника --- т.к. трапеция равнобедренная
в этих треугольниках один катет --- высота, второй катет = (b-a)/2
и можно сразу найти нужную для площади (a+b)/2 ))))))
Неплохое задание, но если подумать то решается просто
Прямоугольная трапеция имеет углы 90,90,120 и 60.тогда по свойству прямоугольного треугольника катет который находиться против угла в 30 градусов равен половине гипотенузы, и по свойству о средней линии трапеции составляем уравнение:
(х+х+9)÷2=13 решаем получаем основания 8,5 и17,5
Центр вписанной окружности О лежит на биссектрисе ВМ(смотри рисунок). Проводим радиусы. Прямоугольные треугольники КОС и NОС равны (у них ОК=ОN как радиусы и гипотенуза ОС общая). Аналогично доказываем равенство остальных треугольников и обозначаем равные стороны Х, У,Z. Далее по свойству биссектрисы находим АМ. Окончательный ответ КМ=6/13.