1-3 щас остальные отправлю
Общий множитель здесь будет (х-4). Его записываем 1 раз.
Смотрим что остается: х-5, это будет второй множитель
значит получаем выражение (х-4)(х-5)
^2 - значит в квадрате
2x-x^2+y^2+2y
2x+(y-x)*(y+x)+2y
2(y+x)+(y-x)*(y+x)
(y+x)*(y-x+2)
В ответе получится следующее
А=2
В= -4
3) Неправильно задана. Апофема пирамиды (гипотенуза) не может быть короче высоты (катета). Периметр P = 16 (ребро основания a = 4).
Если высота H = 9, то апофема
L = √(H^2 + (a/2)^2) = √(81 + 4) = √85, тогда
V = 1/3*a^2*H = 1/3*16*9 = 48
S(бок) = 4*1/2*a*L = 2*4*√85 = 8√85
Если же апофема L = 5, то высота
H = √(L^2 - (a/2)^2) = √(25 - 4) = √21, тогда
V = 1/3*a^2*H = 1/3*16*√21 = 16/3*√21
S(бок) = 4*1/2*a*L = 2*4*5 = 40
4) Проведем диагональное сечение, получим равнобочную трапецию.
Ее основания равны 8√2 и 4√2, боковая сторона равна 16, высота H.
Проведем две высоты из верхних углов на нижнее основание.
Они разделят основание на отрезки 2√2, 4√2 и 2√2.
H = √(16^2 - 4*2) = √(256 - 8) = √248
5) Отношение объемов 128 : 96 = 4 : 3.
Значит, отношение ребер основания и высот равно кор.куб(4) : кор.куб(3)
А отношение площадей поверхностей равно кор.куб(16) : кор.куб(9).