Объяснение:
<em>Радиус</em><em> </em><em>-</em><em> </em><em>это</em><em> </em><em>такая</em><em> </em><em>прямая</em><em> </em><em>которая</em><em> </em><em>проводится</em><em> </em><em>из</em><em> </em><em>цен</em><em>т</em><em>ра</em><em> </em><em>окружности</em><em> </em><em>до</em><em> </em><em>точки</em><em>,</em><em> </em><em>лежащей</em><em> </em><em>на</em><em> </em><em>окружности</em><em> </em>
<em>В</em><em> </em><em>данном</em><em> </em><em>случае</em><em> </em><em>центр</em><em> </em><em>окружности</em><em> </em><em>-</em><em> </em><em>точка </em><em>О</em><em> </em><em>=</em><em>></em><em> </em><em>радиусы</em><em> </em><em>-</em><em> </em><em>АО</em><em>,</em><em> </em><em>ОВ</em><em>,</em><em> </em><em>ОС</em><em>,</em><em> </em><em>О</em><em>D</em>
<em>ВСЕГДА</em><em> </em><em>в</em><em> </em><em>окружности </em><em>радиусы</em><em> </em><em>все</em><em> </em><em>равны</em>
<em>Доказывать</em><em>,</em><em> </em><em>что</em><em> </em><em>это</em><em> </em><em>радиус </em><em>не</em><em> </em><em>нужно,</em><em> </em><em>но</em><em> </em><em>упомянуть</em><em>,</em><em> </em><em>что</em><em> </em><em>прямая</em><em> </em><em>явл</em><em>яется</em><em> </em><em>радиусом</em><em> </em><em>-</em><em> </em><em>нужно</em>
<em>Если </em><em>что</em><em>,</em><em> </em><em>диаметр</em><em> </em><em>состоит</em><em> </em><em>из</em><em> </em><em>2</em><em> </em><em>одинаковых</em><em> </em><em>радиусов</em><em> </em><em>и</em><em> </em><em>диаметр</em><em> </em><em>-</em><em> </em><em>прямая</em><em>,</em><em> </em><em>проходящая</em><em> </em><em>из</em><em> </em><em>одной</em><em> </em><em>точки</em><em> </em><em>окружности</em><em>,</em><em> </em><em>до</em><em> </em><em>другой</em><em> </em><em>точки</em><em> </em><em>окружности</em><em> </em><em>и</em><em> </em><em>при</em><em> </em><em>этом</em><em> </em><em>проходящая</em><em> </em><em>через</em><em> </em><em>центр</em><em> </em><em>окружн</em><em>ости</em>
<em>Диаметры</em><em> </em><em>-</em><em> </em><em>АС</em><em> </em><em>и</em><em> </em><em>BD</em>
См чертеж.
ED перпендикулярно АВ, (ED = a*корень(3)/2; но для решения это не нужно:))
В ПЛОСКОСТИ, ПЕРПЕНДИКУЛЯРНОЙ АВ проводим ЕF так, чтобы DF = a/2;
Треугольник BDF - прямоугольный и DF перпендикулярна BF.
Действительно, DF перпендикулярна ЕF по построению, но DF лежит в плоскости, перпендикулярной АВ, то есть она перпендикулярна и АВ, а значит, и любой прямой в плоскости, проходящей через АВ и EF.
Поэтому BF - искомая проекция BD на BFE и её величину очень легко вычислить, если увидеть, что угол FBD равен 30 градусам (FD/BD = 1/2, малая диагональ равна стороне ромба).
Ответ а*корень(3)/2;
Биссектриса делит сторону на отрезки, пропорциональные прилежащим сторонам...
нужно найти основание треугольника (х))))
по т.Пифагора (х/2)² = 55² - 44² = (55-44)*(55+44) = 11*99 = (11*3)²
х = 66
искомое отношение = 55/66 = 5/6