Справедлива формула КД*ДL=МД*ДН
подставляем данные, с учетом того, что если ДL=х, тогда КД =14-х, получим (14-х)*х=4*12
14х-х²=48, х²-14х+48=0, по теореме, обратной теореме Виета, находим корни, это 6 и 8.
Значит, если ДL=8, то КД=14-8=6
Если же ДL=6, то КД=14-6=8
Ответ искомые отрезки 8 и 6
Зная, что точка A делит отрезок MK в соотношении 1 к 3, начиная от точки M, запишем: MA/AK=1/3. Тогда, если MA=x, то AK=3x. Кроме этого, так как BC=2AM, то ВС=2x.
Найдем длину отрезка МК: МК=МА+АК=х+3х=4х.
Заметим, что МК=2ВС - основание треугольника в 2 раза больше, чем нгекий отрезок, параллельный ему же и соединяющий боковые стороны. Значит, ВС - средняя линия. Получим следующие равные отрезки: МВ=ВР=РС=СК.
Проведем высоту РН. Так как высота равнобедренного треугольника является также и медианой, то ВН=НС=х.
Рассмотрим треугольники РНВ и ВАМ. В этих треугольниках ВР=МВ; ВН=МА=х; углы В и М равны, так как они являются соответственными при пересечении параллельных прямых ВС и МК секущей МВ. Значит, по двум сторонам и углу между ними эти треугольники равны. В равных треугольниках против равных стороны (в данном случае ВР и МВ) лежат равные углы (в данном случае ВНР и МАВ). Угол ВНР прямой, значит и угол МАВ прямой.
Ответ: 90 градусов
Те углы, у которых они равные
Пусть длина x, тогда ширина = (80-2x)/2, а площадь
s = x*(80 -2x)/2= 40x - x^2
s' = 40-2x
s'=0 - т. экстремума
40-2x = 0
2x =40
x =40/2
x = 20 м
Тогда ширина будет (80-2*20)/2 =20 м, т. е. прямоугольник с максимальной площадью при заданном периметре - это квадрат.
s макс = 20*20 = 400 кв. м
Вся "соль" решения в углах, образующихся при основании.
<u>Нарисуем трапецию и диагонали в ней.</u>
Из вершины угла при верхнем основании проведем прямую, параллельную диагонали, до пересечения с продолжением большего основания трапеции.
Получим прямоугольный равнобедренный треугольник с катетами из 2- диагоналей и гипотенузой, равной сумме оснований.("Добавка" к нижнему основанию по свойству параллелограмма равна верхнему основанию)
По<u> формуле диагонали квадрата</u>
d=a√2 найдем длину этой гипотенузы.
Она равна 8√2*√2=16 см
Высота этого треугольника является и высотой трапеции. Она равна половине гипотенузы треугольника = полусумме оснований
h=16:2=8
Площадь трапеции равна произведению полусуммы оснований трапеции на ее высоту и равна
S=8*8=64 см²