Вот держи, надеюсь правильно, но по сути вроде как да.
Дано: а||в, с-секущая
<1 и<2- накрест лежащее углы
<1=<2; <1+<2=210°;
найти: <1 и <2.
Решение:
<1=<2=210°÷2=105°;
ответ: 105°.
Проведем через вершину сечение, перпендикулряное стороне основания. В нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из S на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. Нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (Эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
В этом треугольнике нам задан так же угол в 60 градусов.
Далее все очевидно
d*cos(60) = a/2; Sбок = 4*d*a/2 = 4*(a/2)^2/cos(60);
a/2 = 2/sin(60); (a/2)^2 = 4/(3/4) = 16/3;
Sбок = 2*4*16/3 = 128/3
площадь основания в 2 раза меньше (Sбок*cos(60)), это 64/3. А ВСЯ площадь поверхности будет 64.
АВСД это ромб, а у ромба все стороны равны,
АД=8+5=13 см
АВ=13 см
возьмем треугольник АВЕ он прямоугольный, неизвестная сторона ВЕ, ее найдем по теореме Пифагора
ВЕ²=АВ²-АЕ² = 13²-5² = 169-25 = 144
ВЕ=√144=12см (высота ромба)
площадь ромба можем найти по формуле S=a*h = 13*12 = 156 см²