У прямокутному трикутнику катет, протилежний до одного з гострих кутів, дорівнює добутку гіпотенузи на синус цього кута.
У прямокутному трикутнику катет, протилежний до одного з гострих кутів, дорівнює добутку прилеглого катета на тангенс цього кута.
У прямокутному трикутнику катет, прилеглий до одного з гострих кутів, дорівнює добутку гіпотенузи на косинус цього кута.
У прямокутному трикутнику катет, прилеглий до одного з гострих кутів, дорівнює добутку протилежного катета на одиницю, поділену на тангенс цього кута.
Гіпотенуза прямокутного трикутника дорівнює відношенню протилежного до одного з гострих кутів катета до синуса цього кута.
Гіпотенуза прямокутного трикутника дорівнює відношенню прилеглого до одного з гострих кутів катета до косинуса цього кута.
<span>Завдання на розв’язання прямокутних трикутників — це завдання на знаходження невідомих сторін і кутів трикутника за його відомими кутами і сторонами</span>
Дано:
МК-средняя линия,
АD=DM, EC=KE
АС=8 cм
АМКС-?
DE-?
Решение.
МК-средняя линия по условию⇒ МК║АС. Геометрическая фигура, у которой 2 стороны параллельны, а 2 нет является трапецией, значит АМКС-трапеция.
АМ=МВ, ВК=КС-по условию, так как МК-средняя линия ΔАВС. Значит МК=1/2АС, МК=1/2*8=4см.
AD=MD KE=EC, значит DE║MK║AC, DE- средняя линия трапеции. ⇒DE=(MK+AC)/2
DE=(4+8)/2=6см.
Ответ: АМКС-трапеция, DE=6см
Ответ:
37
Объяснение:
1) Угол 2 и угол OBA являются вертикальными, значит, они равны
2) По условию OA=OB, значит углы при основании также равны
3) Угол 1 = углу OBA = 37 градусам
Пусть данные точки имеют следующие координаты:
А( х₁ ; у₁ )
В( х₂ ; у₂ ).
Проведем перпендикуляры из точек А и В к осям координат.
АС = x₂ - x₁
BC = y₂ - y₁
Из прямоугольного треугольника АВС по теореме Пифагора:
AB = √(AC² + BC²)
АВ = √((x₂ - x₁)² + (y₂ - y₁)²)
Формула для вычисления расстояния между точками в пространстве выводится аналогично.
АВ = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)