угол ВАО=90-30=60 гр
в прямоугольнике диагонали равны, АС=BD=12см
и пересекаются в середине, АО=ВО=6см
тр-к АОВ равносторонний, т к АО=ВО и угол ВАО=60 гр
следовательно периметр P=6*3=18 cм
Задачи с 33 по 37 однотипные
1) строим график у= sin x ( синий пунктир на рисунке)
2) сжимаем график вдоль оси ох в два раза ( черный цвет)
3)сдвигаем график на π/2 единиц влево. ( красный пунктир)
или переносим ось ох на π/2 единиц вправо
3) Растягиваем амплитуду до 2,5
т.е точку максимума 1 заменяем точкой с той же абсциссой, но ординатой 2.5
точку минимума (-1) заменяем точкой с той же абсциссой, но ординатой равной -2,5
(сплошной линией красного цвета)
<span><em>Правильная призма — это прямая призма, основанием которой является правильный многоугольник</em>, в случае правильной четырехугольной призмы - основанием призмы является квадрат.
</span><em>Правильная четырехугольная призма - прямоугольный параллелепипед.</em>
<span>Пусть данная призма - АВСДА₁В₁С₁Д₁
</span>Сделаем рисунок. (<span>Во втором рисунке призма «уложена" на боковую грань для большей наглядности. )
Решение.
<span>АВ ⊥ ВС1 (<em>если прямая перпендикуляра плоскости, она перпендикулярна любой прямой на этой плоскости</em>).
</span> Диагональ АС</span>₁ - <u>гипотенуза</u> прямоугольного треугольника АВС₁<span>
Тогда </span>АВ, сторона основания, противолежащая углу 30º, равна половине АС₁
<span>АВ=ВС=СД=ДА=2
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
<span>D²=а²+b²+c²</span><span>16=2²+2²+h²⇒
</span><span>h²=16-8=8
</span>h=√8=2√2
<em>Площадь боковой поверхности призмы равна произведению периметра ее основания на высоту.
</em>Р=4*2=8 см
<span>Ѕ бок=8*2√2=<em>16√2 см²
</em></span><span>-------------.
</span><em><u>Высоту </u></em> призмы можно найти иначе.
<span>а) Сначала найдем д<u>иагональ ВС</u></span></span>₁ <span>боковой грани- она равна<u> АС</u></span>₁<u></u><span><u>·cos 30</u>°=(4 √3):2=2 √3
Высоту h трапеции найдем по т. Пифагора из треугольника ВСС</span>₁<span><span>
</span>h² =(2 √3)²+2²=12-4=8
<span>h=2√2
</span>-------
б) Тот же результат получим, найдя</span> по т. Пифагора из треугольника АВС₁ диагональ ВС₁<span> боковой грани, затем из прямоугольного треугольника ВСС</span>₁ <span>
<em><u>высоту призмы </u></em>СС</span>₁.
1. СС₁ и АА₁ медианы. Медианы в точке пересечения делятся в отношении 2:1 считая от вершины.
СО=9 ⇒ С₁О=9/2=4,5 ед;
АО=6 ⇒А₁О=6/2=3 ед.
2. Если ВС║AD, то АВСD - трапеция с основаниями АD=14 и ВС=10 тогда МК - её средняя линия (14+10)/2=12 ед.
Или второй способ:
MN средняя линия ΔАВС равная половине ВС 10/2=5 ед;
NK средняя линия ΔACD равная половине AD 14/2=7 ед;
MK=MN+NK=5+7=12 ед.