Тут легко все) так как треугольник равнобедренный значит два угла будут равны. 3 угол известен - 80 градусов. Получается из суммы всех углов вычитаем 80 и делим на 2. Ответ (180-80)/2=50 градусов
Дана <span>правильная четырехугольная пирамида SАВСД, длина бокового ребра которой равна L = 3 см, а стороны основания a = 2√3 см.
Проведём осевое сечение через 2 боковых ребра.
В сечении равнобедренный треугольник АSС с боковыми сторонами </span>L = 3 см и основанием - диагональ квадрата основания d = a√2 = (2√3)*√3 = 2√6 см.
Высота Н пирамиды равна:
Н = √(L² - (d/2)²) = √(9 - 6) = √3 см.
Перпендикуляр из центра основания пирамиды на боковое ребро (пусть это ОК) - это высота треугольника ОSС, она равна (√3*√6)/3 = √2 см.
Искомый угол лежит в перпендикулярном сечении к боковому ребру.
В сечении - треугольник ВКД.
Апофема А = √(3² - (2√3/2)²) = √(9 - 6) = √3 см.
КД - высота, она равна 2S/L = (2*((1/2)*2√3*√6))/3 = 2√2 см.
То есть она как гипотенуза треугольника ОКД в 2 раза больше катета ОК, а угол КДО равен 30 градусов.
Отсюда искомый угол ВКД равен 2*60 = 120 градусов.
АВСД это ромб, а у ромба все стороны равны,
АД=8+5=13 см
АВ=13 см
возьмем треугольник АВЕ он прямоугольный, неизвестная сторона ВЕ, ее найдем по теореме Пифагора
ВЕ²=АВ²-АЕ² = 13²-5² = 169-25 = 144
ВЕ=√144=12см (высота ромба)
площадь ромба можем найти по формуле S=a*h = 13*12 = 156 см²
нАИменьшей здесь является сторона в 5 см, а наибольшей в 10 см, наименьшей стороной в подобном треугольнике будет 10 см, тогда коэффициент подобия равен 10/5=2
И самая большая, стало быть в 2 раза больше 10см, т.е. равна 20 см
Ответ 20 см