Обозначим треугльник АВС(смотри рисунок). Проведём высоты АА1 и СС1. Треугольники АС1С и АА1С прямоугольные и гипотенуза АС у них общая. Известно, что центр О описанной окружности лежит на середине гипоенузы. В данном случае нам важно то, что вокруг указанных треугольников может быть описана одна общая окружность, которая будет также описанной окружностью для четырёхугольника АС1А1С. А далее смотрим дуги и углы на которые они опираются. Вписанные углы опирающиеся на одну и ту же дугу равны. Например угол ВКА=углу ВСА=бетта. Поскольку они опираются на дугу АМВ, далее в решени приводятся равные углы и дуги на которые они опираются . Затем из прямоугольных треугольников МВС1 и ВА1К находим значения углов Х и У, подставляем и получаем угол ВА1С1=альфа, угол ВС1А1=бетта.
Ответ:20 см.
Т.к Сторона лежащий напротив 30 градусов равняется половине гипотенузы.
Угол DAB=DCB
36/2=18(BCO)
Угол BCO 90'
180-(90+18)=72'
S=10*8=80см^2
Ответ: 80см^2