1) точка С
2)точкаD)))))))))))))
MB делит ABC на 2 Египетских треугольника, следовательно MB =4. Рассмотрим треугольник SMB: он равнобедренный прямоугольный, гипотенуза - SM, угол B = 90°, угол S = M = 45°. Ответ: 45°
Очевидно, что высота трапеции h=2r=2*3=6
Площадь трапеции S=(a+b)*h/2
60=(a+b)*6/2
(a+b)/2=10 (1)
Треугольники MOC и OCE прямоугольные с общей гипотенузой. Следовательно, они равны между собой
CE=MC=a/2
Треугольники OED и OND прямоугольные с общей гипотенузой. Следовательно, они равны между собой
ED=ND=b/2
CD=CE+ED=a/2+b/2=(a+b)/2=10
Площадь треугольника COD равна 1/2CD*EO=1/2*10*3=15
Треугольник CPD прямоугольный, по т.Пифагора
PD²=CD²-CP²=10²-6²=64
PD=8
С другой стороны
PD=b/2-a/2
b/2=PD+a/2
b/2=8+a/2
b=16+a
Подставляя в (1) найдем a
(a+16+a)=20
2a=20-16
2a=4
a=2
b=16+2=18
Рассматривая прямоугольные треугольники OCE и OED по т.Пифагора находим
OE=√(3²+(a/2)²)=√(9+1)=√10
OD=√(3²+(b/2)³)=√(9+81)=√90=3√10
Cтороны треугольника CPD найдены
Площадь треугольника и его радиус описанной окружности связаны формулой
S=OE·OD·CD/(4R)
R=OE·OD·CD/(4S)
R=√10·3√10·10/(4·15)=300/60=5
Ответ: 5 см
Tg=bc/ac; bc=ac*tg
tg=sin/cos
cos2=1-sin2
Cos2=1-1/17;Cos=4/√17
Tg=√17*√17/17*4=17/68 Bc=2*17/68=0.5