Треугольник АВС, уголВ=45, радиус=8, АС=радиус*2*sinB=8*2*корень2/2=8*корень2
Если противолежащий катет равен половине гипотенузы, то угол равен 30°
1) AO=CO (радиусы равны)
BO=DO(радиусы равны)
Угол AOD= углу BOC (по свойству вертикальных углов)
△AOD=△BOC(по двум сторонам и углу между ними)
AD=BC (как соответственные элементы в равных треугольниках)
2) AO=CO (радиусы равны)
BO- общая сторона
Угол BOC= углу AOB (по условию)
△BOC=△AOB(по двум сторонам и углу между ними)
MN- средняя линия треугольника АВD ( см. рисунок в приложении)
Δ AMN подобен Δ ABC
Площади подобных треугольников относятся как квадраты сходственных сторон
S (Δ AMN) : S( Δ ABC)= (MN)² : (BD)²
MN=1/2 BD ⇒ BD=2 MN
S (Δ AMN) : S( Δ ABC)= (MN)² : (2 MN)²=1:4
S(ΔABC)=4·S(ΔAMN)=4·32=128
Диагональ BD разбивает параллелограмм на два равных треугольника
S(параллелограмма)=2·S(Δ ABC)=2·128=256
Ответ. S( параллелограмма)=256 кв. ед
В прикрепленном файле показан "вид сверху" на прямоугольник MNBA. Треугольник АВС наклонен (вершина С БЛИЖЕ к нам, чем плоскость прямоугольника) Размеры взяты в скобки, потому что соответствуют наклонным отрезкам. Рядом показан вид сбоку, на треугольник ВСМ.
Задачка упрощается благодаря тому, что 5,12,13 - пифагоровы числа, то есть АВС - прямоугольный тр-к, то есть проекция С1 лежит на BN (я сразу так и нарисовал). Нам надо найти угол СВМ в треугольнике СВМ, это и будет искомый двугранный угол (плоскость СВМ перпендикулярна АВ, потому что АВС - прямоугольный треугольник, а МВ - по условию, MNBA - прямоугольник).
Но СВМ - тоже прямоугольный треугольник (стороны 9, 12 и 15, опять пифагоровы числа). Поэтому, сразу ответ -
arcsin(3/5)
Если бы С1 не попадала на сторону ВМ, и если бы СМВ тоже не был бы прямоугольным, задача усложнялась бы, но не так, чтобы очень :) - всё сводилось бы к применению теоремы косинусов в двух треугольниках с заданными сторонами.