одна сторона 5х вторая 12x по т.Пифагора диаг^2=стор1^2+ стор2^2
Площадь основания по формуле Герона: S=√(p(p-a)(p-b)(p-c)).
p=(a+b+c)/2=(2+3+3)/2=4.
S=√(4(4-2)(4-3)(4-3))=√8=2√2.
Из одной из вершин верхнего основания призмы опустим высоту на нижнее основание. В прямоугольном треугольнике, образованном этой высотой, прилежащим боковым ребром и проекцией ребра на нижнее основание, острый угол по условию равен 45°, значит треугольник равнобедренный с гипотенузой 4 и высота призмы (катет треугольника) h=4/√2=2√2.
Объём призмы: Vп=Sh=2√2·2√2=8.
Объём куба: Vк=а³ ⇒ а=∛Vк.
По условию объёмы призмы и куба равны, значит ребро куба:
а=∛8=2 - это ответ.
Уголы А и В в сумме дают 180 градусов. Пусть угол В будет х, тогда угол А будет 3х. Получаем уравнение х+3х=180, 4х=180, х=45. Значит угол А равен 135. Так как это параллелограмм, то Угол А=С=135, угол В=D=45 :)
Если хорды пересекаются в точке О, то АО*ОВ=СО*ОД, 4*12=х*3х, 48=3х², х²=16, х=4 (коэффициент пропорциональности положителен) ⇒ СО=х=4, ОД=3х=12, СД=4+12=16
Два треугольника подобны, если два угла одного треугольника соответственно равны двум углам другого.
Дано: \triangle ABC и \triangle A_1B_1C_1, \angle A = \angle A_1 и \angle B = \angle B_1.
Требуется доказать: \triangle ABC \sim \triangle A_1B_1C_1.
Доказательство:
Отложим BK=B_1A_1 и проведем KL||AC; \triangle KBL \sim \triangle ABC (по лемме). По стороне и двум углам \triangle A_1B_1C_1=\triangle KBL (B_1A_1=BK, \angle B_1=\angle B, \angle A_1=\angle A по условию и \angle K=\angle A как соответственные при параллельных прямых KL и AC и секущей AB, поэтому \angle A_1 = \angle K). Отсюда \triangle ABC \sim \triangle A_1B_1C_1