Расстояние от точки до плоскости<span> – длина перпендикуляра, опущенного из точки на эту плоскость. Пусть перпендикуляр из В будет ВС, из М - МН. (рис.1 вложения) А, Н и С - лежат на одной прямой АС, т.к. являются точками проекции АВ на плоскость. Соединим А, С и В. ∆ АВС и ∆ АМН - прямоугольные и подобны т.к.имеют общий острый угол ( признак подобия прямоугольных треугольников). Примем АМ=2а, АВ=2а+3а=5а. Тогда k=</span>MH:AB=2/5⇒ 5 MH=2 AB⇒ 5 MH=2•12,5=25 м MH=5 м ------- В условии не указано, что АВ - наклонная. Поэтому возможно, что АВ - перпендикуляр к плоскости. (рис.2 вложения) Тогда А<span>В=12,5, а</span> <span>расстояние от плоскости до точки М=AM. </span>АВ=12,5=5 а⇒ а=12,5:5=2,5 АМ=2•2,5=5 м
Есть трапеция АВСД, где углы А и Д прямые. Вписана окружность с центром О. Точки К, Л, М - точки пересечения окружности со сторонами АВ, ВС и СД соответственно. ВЛ=4 и ЛС=25. Найти высоту.