Ответ:
∠ABD=135-90=45
ΔADB-равнобедренный, ∠D=90:
AD=BD
S ΔADB = S ABCD / 2 = 49/2=24.5
S=AD² /2
AD= 7см.
Объяснение:
Дано:
ABCD - ромб
AC, BD - диагонали
AC пересекает BD=O
AC=12
BD=16
Найти: AB
Решение:
1) AO=OC=6 (по свойству ромба)
2)BO=OD=8 (по свойству ромба)
3) Рассмотрим треугольник ABO (угол AOB=90 градусов)
AO=6, BO=8=> AB=10 (Пифагорова тройка)
а) Пусть катет равен х см, тогда по теореме Пифагора :
х² + х² = 8²
2х² = 64
х² = 32
х = √32 = 4√2
Площадь прямоугольного треугольника можно найти по формуле S = 0.5 * a * b (а и b это катеты)
S = 0.5 * 4√2 *4√2 = 4*4 = 16 (см²)
б) 1,4дм = 14 см
Пусть катет будет равен х см, тогда по теореме Пифагора :
х² + х² = 14²
2х² = 196
х² = 98
х = √98 =7√2 см
S = 0.5*7√2 *7√2 = 7*7 = 49см² = 0.49 дм²
в)пусть катет также будет равен х м , по теореме Пифагора :
х² + х² = с²
2х² = с²
х² = с²/2
х = с/√2
S = 0.5 * (c/√2) * (c/√2) = c²/4 (м²)
S-площадь шестиугольника. p-периметр шестиугольника. r-радиус окружности
S=p*r
p=33\3=11