Треугольник АВС, АВ=26, ВС=28, АС=30, ВН-высота, ВО/ОН=2/3=2х/3х, ВН=5х, МК паралельна АС полупериметр (р)=(АВ+ВС+АС)/2=(26+28+30)/2=42, площадь АВС=корень(р*(р-АВ)*(р-ВС)*(р-АС))=корень(42*16*14*12)=336, треугольник МВК подобен треугольнику АВС по двум равным углам - угол В - общий, угол ВМК=уголВАС как соответственные, в подобных треугольниках площади относятся как кваддраты соответстующих сторон(высот, медиан..), площадь АВС/площадиМВК=ВО в квадрате/ВН в квадрате, 336/площадь МВК=25*х в квадрате/4*х в квадрате, площадь МВК=53,76, площадь АМКС=336-53,76=282,24
по свойству угла в 30 градусов , прилежащий катет равен половины гипотенузы, а там дальше по пифагора . квадрат одного катета равен гипотенуза в квадрате минус другой катет в квадрате.
Ответ:
16√3 см²
Объяснение:
Дано: ΔАВС - равнобедренный, ВС=АВ=8 см.
∠А/∠В=1/4.
Найти S(АВС).
Пусть ∠А=∠С=х° т.к. у равнобедренного треугольника углы при основании равны
Тогда ∠В=4х°.
Проведем высоту ВН, которая является и биссектрисой ∠В по свойству высоты равнобедренного треугольника.
Тогда ∠АВН=1/2 ∠В=2х°
Рассмотрим ΔАВН - прямоугольный, ∠А+∠АВН=90° по свойству острых углов прямоугольного треугольника. Составим уравнение:
х+2х=90; 3х=90; х=30. ∠А=30°, тогда ВН=1/2 АВ = 8:2=4 см по свойству катета, лежащего против угла 30 градусов.
По теореме Пифагора АН=(√АВ²-ВН²)=√(64-16)=√48=4√3 см.
АС=2 АН=4√3 * 2 = 8√3 см
S(АВС)=1/2 * АС * ВН = 1/2 * 8√3 * 4 = 16√3 см²
Пусть меньший из углов=х.Тогда другой будет 4х.Сумма смежных углов= 180 градусов.Получаем: х+4х=180 ; 5х=180; х=36.Нам нужен тупой угол 36*4=144 градуса