<span><em>В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен m,а противолежащий угол равен 30</em>°<em>. Диагональ </em><span><em>большей боковой грани призмы наклонена к плоскости ее основания под углом 60 </em></span>°<span><em>. <u>Найдите объем цилиндра и его площадь и площадь боковой поверхности
</u></em></span></span><span>Пусть центр нижнего основания цилиндра будет О, а основание вписанной призмы -
⊿ АВС, где ∠С=90° а </span><span>∠В=30°
</span>Так как катет АС, равный m, противолежит углу 30°, гипотенуза
<span>АВ =АС:sin(30°)=2m</span>
Центр описанной вокруг прямоугольного треугольника окружности лежит на середине гипотенузы. Следовательно, ВО=ОА=R=m.
Объем цилиндра
V=S*H
<span>Сумма острых углов прямоугольного треугольника равна 90°
</span><span>Треугольник АВВ1 - прямоугольный с острым углом ВАВ1=60°
</span><span>H=ВВ1=AB*tg (60°)=2m*√3
</span><span>V=π*m²*2m*√3=2π m³√3</span>
Площадь боковой поверхности
<span>S=L*H=2πr*H=2πm*2m*√3=4πm²*√3</span><span>
</span>
Т.к. угол BMK=48°, то угол KMD=90<span>°-48= 42
стороны ромба равны следовательно KD=MD отсюда
угол KMD= угол DKM = 42, значит угол KDM=96</span><span>°.
ABCD - ромб, KDM=ABC,
и BCD=DAB=(360-2*KDM)/2=84</span><span>°</span>
Ответ: 8см²
Объяснение: Т.к. точка Т - середина АВ, то АТ=АВ/2,
Р - середина АС, значит, АР=АС/2, а т.к. точки Т и Р - середины двух сторон треугольника, то ТР- его средняя линия, она параллельна стороне ВС и равна ее половине. Значит, периметр треугольника АТР равен половине периметра треугольника АВС.=8см. По формуле площади треугольника - полупериметр умноженный на радиус окружности, вписанной в треугольник, ищем площадь треугольника АТР. Полупериметр треугольника АТР равен 8/2=4/см/
Значит, искомая площадь 4*2=8/см²/
<span>В треугольниках АВС и АСD две стороны равны по условию, основание АС - общее. </span>
<span>∆ АВС и∆ АСD равны по третьему признаку равенства треугольников. <em>Углы, лежащие против равных сторон равных треугольников, равны</em>. </span>⇒
∠<span>АСВ=</span>∠САD
5,4 так как с ередина ав ,а ав =10,8