а)Основанием пирамиды служит квадрат, проекцией бокового ребра в √17 см, есть половина диагонали основания, которая равна а√2=4√2, а ее половина 2√2 см, тогда высота пирамиды может быть найдена как √((√17)²-(2√2)²)=√(17-8)=√9=<u><em>3/см/</em></u>
б)Площадь полной поверхности состоит из площади боковой поверхности и площади основания. Площадь основания равна 4²=16/см²/, а площадь боковой поверхности - это сумма четырех площадей треугольников со сторонами √17см; √17см и 4см. ЕСли провести из вершины пирамиды высоту на сторону основания, то можно найти эту апофему. Она равна √((√17)²-(4/2)²)=√(17-4)=
√13, умножая теперь апофему ( это высота боковой грани правильной пирамиды) на основание, равное 4, деля на два и умножая на 4, получим площадь четырех равных треугольников,т.е. площадь боковой поверхности.
4*(4*√13 )/2= 8√13/см²/, а площадь полной поверхности равна
16+8√13 =8*(2+√13) / см²/
Нужно обозначить току О (пусть это будет точка на плоскости бетта, образованная пересекающимся лучом из точки А). Иными словами у нас будет АО (расстояние от А до бетта). АО=2 (по условию).
Теперь проводеем луч из точки А до линии, образованной пересекающимися плоскостями алья и бетта, пусть луч этот пересекается в точке В.
Теперь у нас есть треугольник АОВ. угол АОВ=90 градусов, т.к. плоскости наклонены под улом 45, то угол ОВА=45 градусов, значит, и второй угол тоже 45 градусов, а это значит, что весь треугольние АОВ мало того, что прямоугольный, так еще и равнобедренный. В этом треугольнике АО и ОВ - катеты, а АВ - гипотенуза.
АО=OВ=2
а АВ по теореме Пифагора
АВ^2=AO^2+OB^2
AB=корень квадратный из 8
Ответ:
≈13,42 км.
Объяснение:
4*3=12 (км) прошел первый турист
2*3=6 (км) прошел второй турист
Имеем прямоугольный треугольник АВС, где АС=12 км, ВС=6 км.
По теореме Пифагора найдем АВ.
АВ=√(АС²+ВС²)=√(144+36)=√180≈13,42 км.
<span>Прямая а пересекает плоскость бета в 1 точке, так как плоскости альфа и бета имеют только одну общую прямую, все точки которой принадлежат обеим плоскостям, прямая а пересекает другую прямую в одной точке (две пересекающиеся прямые имеют только одно место пересечения всегда).</span>
ABCDE=AB+BC+CD+DE=3,5+2,8+2+4=12,3
Ответ: 12,3