Просто надо найти середину 30 градусов на треугольнике и отметить карандашом
1) ΔАСВ подобен ΔЕСF.
Составим пропорцию АВ/АС=ЕF/ЕС. Пусть ЕС=х.
20/10=х/7; 10х=140; х=140/10=14 см. Ответ: 14 см.
2) см. фото ВО=ОD=3 см. ΔКОD. КD²=ОК²+ОD²=64+9=73.
КD=√73 см.
ΔАОD - прямоугольный. АО²=АD²-ОD²=25-9=16. АО=²²4 см.
ΔАОК - прямоугольный. АК²=АО²+ОК²=16+64=80.
АК=√80 см. АК=КС=√80, ВК=КD=√73 см.
Ответ: √73 см, √80 см.
3) Найдем площадь ΔАВС по формуле Герона
S(АВС)=√р(р-а)(р-b)(р-с)=√16·1·3·4=3·8=24 см². р - полупериметр равен 16 . а,b, с - стороны ΔАВС.
ВТ⊥АС. S(АВС)=0,5·АС·ВN=24,
0,5·4·ВN=24.
ВN=24/2=12 см.
ΔВDN. ВD - катет. который лежит против угла 30°, ВD=0,5ВN=12/2=6 см.
Ответ: 6 см.
В равнобедренном треугольнике высота является медианой, т е делит сторону BD пополам. тогда отрезок HD=2см. рассмотрим треугольник EHD. он прямоугольный, т е по теореме пифагора сторона EH^2=ED^2-HD^2 ; EH^2=8^2-2^2=64-4=60 ; тогда EH=корню из 60=корню из 15*4=2корня из 15
5. Рассмотрим DFBR:
1)угол 1 = углу 2 (накрест лежащие при прямых BD и FR и секущей DR)
2) угол 3 = углу 4 (накрест лежащие при прямых DF и BR и секущей DR)
=> DFBR - параллелограм => DF||BR => DF=BR что требовалось доказать.
6. Рассмотрим ∆AQR и ∆ARF:
1) AQ=FR (по условию задачи)
2) QR=AF (по условию задачи)
3) AR - общая
=> ∆AQR=∆ARF по 3 признаку равенства треугольников => угол Q = углу F что требовалось доказать.
7. Рассмотрим ∆AKB и ∆CFD:
1) KB=FC (по условию задачи)
2) AB=CD (т.к. о,4дм=4см, 4см=4см)
3) угол B = углу С (т.к. 180°-90°= углу FCD(по правилу смежных углов) 90°=90°)
=> ∆AKB=∆CFD по 1 признаку равенства треугольников => AK=FD что требовалось доказать.
8. Рассмотрим ∆ABC и ∆ACD
1) AB=CD (по условию задачи)
2) угол BAC = углу ACD (по условию задачи)
3) AC - общая
=> ∆ABC=∆ACD по 1 признаку равенства треугольников => угол B = углу D что требовалось доказать.