4cos²x + 4sinx - 1 = 0
Используем основное тригонометрическое тождество:
4 - 4sin²x + 4sinx - 1 = 0
-4sin²x + 4sinx + 3 = 0
4sin²x - 4sinx - 3 = 0
Пусть t = sinx, t ∈ [-1; 1].
4t² - 4t - 3 = 0
D = 16 + 4•4•3 = 48 + 16 = 64 = 8²
t1 = (4 + 8)/8 = 12/8 - не уд. условию
t2 = (4 - 8)/8 = -4/8 = -1/2
Обратная замена:
sinx = -1/2
x = (-1)ⁿ+¹π/6 + πn, n ∈ Z
Ответ: х = (-1)ⁿ+¹π/6 + πn, n ∈ Z.
2cos^2(x)+3sin(x)=0
2(1-sin^2(x))+3sin(x)=0
2sin^2(x)-3sin(x)-2=0
Пусть, sin(x)=t, тогда
2t^2-3t-2=0
Решая уравнение, получим
t=2 и t=-1/2
a) t=2
sin(x)=2 - не удовлетворяет ОДЗ
б) sin(x)=-1/2
x=(-1)^n*arcsin(-1/2)+pi*n
x=(-1)^n*7*pi/6+pi*n
Ответ:
x=(-1)^n*7*pi/6+pi*n
Такой подходит ? ??????????
В данном случае можно просто подставить нужное значение аргумента. (т.к. данная функция непрерывна в данной точке).