A паралелльно d т.к.1 и 3 соотвественные углы ,а по 2 признаку прямые параллельны !
∆ АВС - равнобедренный, АВ=АС, поэтому АС=37.
<span>Из ∆ АНС по т.Пифагора </span>
АН=√(AC²-НC²)=√(37²-12²)=√1225=35
ВН=37-35=2
<span>По т.Пифагора из ∆ ВНС сторона ВС=√(HC</span>²<span>+BH</span>²<span>) </span>
<span>BC=√(144+4)=√148=2√37</span>
1.длина ребра куба АВСДА1В1С1Д1 равна 4 см. Вычислите длину радиуса окружности, вписаной в треугольник ДА1С1.
2.В равнобедренный треугольник АВС (АВ=ВС) вписана окружность. Касательная L к окружности, параллельна прямой АС, пересекает стороны АВ и ВС в точках Т и Р соответственно. Известно, что периметр четырехугольника АТРС равен 30 см и АС=12 см. Вычислите длину радиуса окружности.
<span>3.В прямоугольнике АВСД, АВ =4 см, ВС= 5 см. Точка Р принадлежит отрезку ВС. В четырехугольник АРСД вписана окружность. Вычислите периметр четырехугольника вершинами которого являются точки А, Д, центр окружности и середина стороны АВ. </span>
Т.к. диагональ АС перпендикулярна стороне СЕ, получаем прямоугольный треуг-ик АСЕ. Рассмотрим его. Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, находим неизвестный угол ЕАС:
<EAC=90-<AEC=90-45=45°
Т.е. прямоугольный АСЕ - равнобедренный, т.к. углы при его основании АЕ равны. АС=ЕС.
Высота СН равнобедренного треугольника, проведенная к основанию, является также медианой. Значит АН=ЕН.
Рассмотрим прямоугольные треуг-ики АВС (он прямоугольный, т.к. трапеция прямоугольная) и АНС. Они равны по одному из признаков равенства прямоугольных треугольников: если гипотенуза и катет одного прямоугольного треуг-ка соответственно равны гипотенузе и катету другого, то такие треуг-ки равны. В нашем случае:
АС - общая гипотенуза
АВ=СН (АВ является по сути той же высотой трапеции).
Значит, ВС=АН
Но АН=1/2АЕ, значит
<span>ВС=1/2АЕ.</span>