Дана прямоугольная трапеция ABCD с основаниями AD u BC, угол BAD=90°. AB = 2r
В трапецию можно вписать окружность только тогда, когда равны суммы противоположных сторон трапеции ⇒ AB + CD = BC + AD
Вписанная окружность касается боковой стороны трапеции в точке Е так, что CE = 4 см, DE = 9 cм ⇒ СD = CE + DE = 4 + 9 = 13 (cм)
Свойство прямоугольной трапеции, в которую вписана окружность: Если точка касания делит боковую сторону на известные отрезки m и n, то радиус вписанной окружности равен
r = √(mn)
r = √(4*9) = √36 = 6 (см) ⇒ AB = 2*6 = 12 (см)
AB + CD = BC + AD
12 + 13 = BC + AD
BC + AD = 25
BC = 25 - AD
Опустим высоту CF на основание AD. ABCF - прямоугольник ⇒
⇒ BC = AF ⇒ BC = AD - DF ⇒ 25 - AD = AD - DF
AD + AD - DF = 25
2AD - DF = 25
В прямоугольном треугольнике CDF:
CD = 13 cм - гипотенуза
СF = AB = 12cм - катет
DF - катет
по теореме Пифагора
CF² + DF² = CD²
12² + DF² = 13²
144 + DF² = 169
DF² = 169 - 144
DF² = 25
DF = √25
DF = 5
2AD - 5 = 25
2AD = 25 + 5
2AD = 30
AD = 30 / 2
AD = 15 (cм)
BC = 25 - 15 = 10 (cм)
Свойство прямоугольной трапеции, в которую вписана окружность: Если в прямоугольную трапецию вписана окружность, площадь трапеции равна произведению ее оснований
S = BC * AD
S = 10 * 15 = 150 (см²)
.
Пятая задача
Доказательство:
угол ЕОЕ= углу GОН (так как они вертикальные)
ЕО=ОG
FO=OH
Из всего этого следует, что треугольники равны по двум сторонам и углу между ними
По условию угол С в 5 раз меньше суммы двух других углов треугольника, т.е. ∠А+∠В=5∠С
Внешний угол треугольника равен сумме двух других, не смежных с ним.
Тогда угол, смежный с углом С, равен 5 углов С, а их сумма равна 180º.
∠C+5∠C=180°⇒
6∠C=180°
∠C=30°
Внешний угол при С=180°-30°=150°
∠А=∠В+50°
2∠В+50°=150°⇒
∠В= (150°-50<span>°</span>):2=50°⇒
∠А=50°+50°=100°
АН- биссектриса ∠А, делит его пополам и отсекает от ∆ АВС треугольник АВН с углами при АВ по 50°
Сумма углов треугольника 180°⇒
∠АНВ=180°-100°=80°
∠АНС=180°-80°=100° ( и смежный, и как внешний = ∠АВН+∠ВАН)
В ромбе диагонали пересекаются под прямым углом и точкой пересечения делятся пополам. Т.о. рассмотрим какой-нибудь прямоугольный треугольник, у которого катеты равны 2√3 и 2. Нам надо найти тангенс меньшего угла. Т.е. tg∠=противолежащий катет/прилежащий катет=2/2√3=1/√3=30°
Так как в ромбе диагонали делят углы пополам, то острый угол равен 60°
Ответ:60°
Точки:
С____________А________В
18 14
Тогда ВС=18+14=32, что соответствует условию. Это ответ.