Согласно условию, АВС- прямоугольный, равнобедренный ( углы 45°, 45°, 90°)⇒ВС/11,1= 11/√1⇒ВС=11,11/√1=12√3
<span><em>В равнобедренном треугольнике основание равно 10 см, а боковая сторона равна 13 см.</em>
<span><em><u>Найти радиус</u> окружности, вписанной в этот треугольник.</em></span>
--------
Формула радиуса вписанной в треугольник окружности:
r=S/p,
где -S- площадь треугольника, р - его полупериметр,
S=a•h:2.h- высота треугольника, а - сторона, к которой она проведена. </span>
<span><em>Высота равнобедренного треугольника, опущенная на основание - еще медиана и биссектриса</em>.
Она делит треугольник на два <u>равных прямоугольных</u>, в которых гипотенуза - боковая сторона, а катетами являются высота h и половина основания.
По т.Пифагора
h=√(13</span>²-5²)=12 cм<span>
</span>S=12•10:2=60 cм²
р=Р:2=(13+13+10):2=18<span> см
</span>r=60:18=10:3=3¹/₃ см
------
Радиус вписанной в равнобедренный треугольник окружности можно найти из подобия треугольников, на которые радиус, проведенный в точку касания, делит половину исходного, т.е. прямоугольный треугольник.
Пусть дан треугольник АВС, ВН его высота.
Высоту найдем как описано выше.
Проведем<u> радиус ОМ</u> в точку касания на ВС.
∆ ВНС и ВМО подобны - оба прямоугольные и имеют общий острый угол при В.
По свойству касательных из одной точки СМ=СН=5. ⇒
ВМ=13-5=8
Из подобия следует отношение:
ВМ:ВН=ОМ:СН
8:12=ОМ:5 ⇒
ОМ=40:12=<span>3¹/₃ см
</span>r=3¹/₃ см
Угол ABO=30градусов значит угол CBO=60 градусов (угол B=90 угол (B-AB0=30 градусов из этого следует что угол CBO=60 градусов) т.к угол CBO=60 то угол BOC=60 (OBC+CBO+BC0=180;180-CBO/2; 180-60/2=60)угол BOA+BOC+COD+DOA=360гр BOC=AOD (как смежные) 360-60-60/2=120 Ответ:60 ;120
Наименьшая высота - это высота, проведенная к наибольшей стороне треугольника.
Высоту можно найти, зная площадь треугольника.
Применим формулу площади Герона.
Площадь треугольника по формуле Герона :
<span>Площадь треугольника со сторонами a, b, c и полупериметром p равна выражению:</span>
_________________
S<span>=√{p (p−a) (p−b) (p−c) }</span>
Находим по этой формуле площадь треугольника=360 см³
Высоту находим из классической формулы площади треугольника:
S=½ha
h=S:½ а, где<span> а - сторона. к которой проведена высота</span>.
h=360:(36:2)=<span>20 см</span>
Так как боковая сторона больше основания на 1 метр, то три длины основания составят 50 - 2 = 48 м, тогда основание будет равно 48:3 = 19 метров, а боковая сторона равна 19+1 = 20 метров.
Полупериметр равен 50:2 = 25, тогда площадь (формула Герона) равна:
S² = 25*(25 - 19)*(25 - 20)*(25 - 20) = 25*25*6, S = √25*25*6 = 25√6.
Ответ: 25√6