Решение в приложенном фото.
Поскольку я не до конца поняла, какова длина высоты, взяла 5 корней из 6.
Проверь вычисления, поскольку ответы не очень красивые.
1) Угол А равен 180-90-60=30
Угол А равен 30 градусов
2) По свойству прямоугольного треугольника напротив угла 30 градусов лежит катет равный половине гипотенузы значит ВС=12/2=6 см
Ответ:6 см
1) Каждая грань этой призмы - параллелограмм. Чтобы найти площадь боковой поверхности, надо найти площадь каждого параллелограмма и сложить. Площадь параллелограмма находят по формуле S=а ·h (а - основание, h - высота)
2) С1В1ВС: в этом параллелограмме основание ВВ1, а высота KN. (по условию KN⊥BB1) Тогда S(С1В1ВС)=12·4 =48
3) АА1В1В: в этом параллелограмме основание ВВ1, а высота МN. (по условию МN⊥BB1) Тогда S(АА1В1В)=12·3 = 36
Остался параллелограмм АА1С1С.
4) По условию прямая ВВ1 перпендикулярна двум пересекающимся прямым в плоскости MNK, значит, она перпендикулярна всей плоскости MNK, а значит, каждой прямой в этой плоскости. В частности, ВВ1⊥МК. 5) Так как прямая АА1 параллельна ВВ1, то АА1⊥МК. Значит, в параллелограмме АА1С1С основание АА1, а высота МК. Тогда S(АА1С1С)=АА1·МК
6) МК найдем из прямоугольного треугольника MNK по теореме Пифагора (MK=5)
7) S(АА1С1С)=12·5=60
8) S(бок)=48+36+60=144
Ответ: 144
1. ∠1 +∠2 = 180° как внутренние односторонние углы при пересечении параллельных прямых а и b секущей с.
∠2 - ∠1 = 34° по условию,
Сложив два равенства, получаем:
2 · ∠2 = 214°
∠2 = 214° : 2 = 107°,
∠1 = 107 - 34° = 73°.
∠3 = ∠1 = 73° как соответственные углы при пересечении параллельных прямых а и b секущей с.
2. ∠АВС = ∠DCB = 37° как накрест лежищие при пересечении параллельных прямых DC и АВ секущей ВС.
Сумма острых углов прямоугольного треугольника равна 90°:
∠ВАС = 90° - ∠АВС = 90° - 37° = 53°