По т. Пифагора
АВ²= АС² + СВ²
АВ²= 80²+150²
АВ²= 6400 + 22500
АВ²= 28900
АВ= 170 (см)
sin∠B= AC/AB= 80/170= 8/17 (знак деления замени знаком дроби)
cos∠B=BC/AB=150/170= 15/17 (знак деления на знак дроби замени)
АО : ОВ = 6,8 : 5,1 = 68 : 51 = 4 : 3 (сократили на 17)
СО : OD = 8,4 : 6,3 = 84 : 63 = 4 : 3 (сократили на 21)
∠АОС = ∠BOD как вертикальные, ⇒
ΔАОС подобен ΔBOD по двум пропорциональным сторонам и углу между ними.
Из подобия треугольников следует равенство соответствующих углов:
∠САО = ∠DBO, а эти углы накрест лежащие при пересечении прямых АС и BD секущей АВ, значит АС║BD.
а) BD : АС = ВО : ОА = 3 : 4
б) Paoc : Pdob = AO : OB = 4 : 3
в) Sdob : Saoc = (BO : OD)² = (3/4)² = 9/16
1)Один острый угол прямоугольного треугольника х, второй (7/3)х.
Сумма острых углов прямоугольного треугольника 90°.
х+(7/3)х=90
(10/3)х=90
х=27
(7/3)х=(7/3)·27=63
Ответ. 63° - больший острый угол.
2) В треугольнике ABC угол С равен 90°, CH высота, угол А равен 48°. угол СВА равен 42°
Так как сумма острых углов прямоугольного треугольника АВС равна 90.Угол ВСН равен 48° , а сумма острых углов прямоугольного треугольника СВН равна 90°
3) В треугольнике АВС угол А равен 21°, угол В равен 82°, СН -высота.
угол АСН равен 90°-21°=69°
угол ВСН равен 90°-82°=8°
Разность углов АСН и ВСН равна 69°-8°=61 °
4) В треугольнике АВС угол А равен 70°, СН-высота, угол ВСН равен 15°
Угол СВН равен 90°-15°=75°
угол АСВ равен 180°-70°-75°=35°